
www.manaraa.com

I

AL al-Bayt University

Prince Hussein bin Abdullah Faculty of Information

Technology

Computer Department

Modelling and Analysis of Software Reliability Phenomenon

in

Distributed Development Environment

By

Nesreen T. Qallab

Supervisor

Dr. Omar Shatnawi

Submitted this Thesis to complement the Requirements for the

Master's Degree of Science in Computer Science

Deanship of Graduated Studies

Al al_bayt University

May,2017

www.manaraa.com

II

Committee Decision

This Thesis (Modelling and Analysis of Software Reliability

Phenomenon in Distributed Development Environment) was

Discussed and Approved on 21/5/2017

The Members Of Discussion Committee Signature

Dr. Omar Shatnawi

…………………..

Dr. Saad Bani-Mohammad …………………..

Dr.Akram Hamarsheh …………………..

Dr.Ahmad Otoom …………………..

www.manaraa.com

III

Dedication

To my mother who put her life for me.

To pure soul of my father.

To soul of my daughter, who revolves around me, Sara..

To the candle of my life, my daughter, Mira.

To all my family For their encouragement and understanding during

the period of my study.

www.manaraa.com

IV

Acknowledgment

First, I would like to thank God for his graces and guidance. Thanks

also to my mentor Dr. Omar Shatnawi for his expert guidance and

timely input throughout of my thesis. I would also like to thank him for

his constant motivation and supporting during my graduate studies at

Al al _Bayt university. Also, I would like to thank the members of the

examination committee for their comments, which contributed to the

improvement of thise thesis.

Finally, I would lik to thank my friends Eng.Raya Omoush, Eng Manal

Al_Eassa Miss.Rasha Harahsheh, Miss.Fatima Hajjawi,

Miss.Maryam Mosleh for their supporting and Encouragement during

my study.

Nesreen Qallab

May,2017

www.manaraa.com

V

Contents

Committee Decision ... II

Dedication ... III

Acknowledgment .. IV

Contents .. V

Tables list.. VIII

Figures list .. IX

Appendices list ... X

Abstract .. XI

Chapter 1 Introduction and Overview ... 1

1.1 Software Reliability ... 1

1.2 Software Reliability Modelling Types 4

1.3 Non-Homogeneous Poisson Process Models 4

1.4 Testing-Effort Modelling .. 6

1.5 Challenges Facing Software Reliability 7

1.6 Thesis objective .. 8

1.7 Structure of the Thesis .. 8

www.manaraa.com

VI

Chapter 2 Software Reliability Modelling in Distributed Development

 .. 10

Environment: Literature Review ... 10

2.1 Software Reliability Modelling ... 10

2.1.1 Yamada et al. (2000) Model ... 11

2.1.2 Kapur et al. (2004) Model ... 12

2.1.3 Kapur et al. (2009a) Model ... 12

2.1.4 Kapur et al. (2009b) Model ... 12

2.1.5 Shatnawi (2013) Model ... 12

2.2 Study Motivation ... 13

2-3 Study Methodology ... 14

Chapter 3 Testing-Effort Dependent Software Reliability Modelling

for Distributed Systems in Imperfect-Debugging Environment: 17

A Proposed Integrated Approach ... 17

3.1 Assumption and Notations .. 19

3.2 Formulation ... 21

3.3 Modelling the Total Imperfect Fault-Debugging-Process 24

Chapter 4 Model Validation and Comparison Criteria 25

4.1. Software Reliability Data Analysis Technique 26

www.manaraa.com

VII

4.2 Model Validation and Evaluation ... 27

4.3 Parameter Estimation Techniques .. 28

Chapter 5 Data Analyses and Model Comparisons 29

5.1 First-Software-Development-Project 29

5.2 Second-Software-Development-Project 38

5.3 Third Software Development Project 46

Chapter 6 Concluding Remarks and Future Work 55

References .. 57

 62 ...الملخص

Appendices ... 64

www.manaraa.com

VIII

Tables list

Table Description Page
2.1 Models under comparison 13
5.1 Parameter estimation and comparison criteria metrics results 30
5.2 Parameter estimation 32
5.3 Plausible Results 33
5.4 Fault Type Content Results 33
5.5 Calculated Results for Re-used Components 33
5.6 Calculated Results for Newly-Developed Components 34
5.7 Comparison criteria metric results 36
5.8 Parameter estimation and comparison criteria metrics results 38
5.9 Parameter estimation 40

5.10 Plausible Results 41
5.11 Fault Type Content Results 41
5.12 Calculated Results for Re-used Components 41
5.13 Calculated Results for Newly-Developed Components 42
5.14 Comparison criteria metric results 44
5.15 Parameter estimation and comparison criteria metrics results 46
5.16 Parameter estimation 48
5.17 Plausible Results 49
5.18 Fault Type Content Results 49
5.19 Calculated Results for Re-used Components 49
5.20 Calculated Results for Newly-Developed Components 50
5.21 Comparison criteria metric results 52

www.manaraa.com

IX

Figures list

Figure Description Page
1.1 Aim of software quality/reliability measurement 3
3.1 Perfect-debugging-process 17
3.2 Imperfect-debugging-process 17
3.3 Fault-debugging process for ‘easy to debug’ type 20
3.4 Fault-debugging process for ‘medium to debug’ type 21
3.5 Fault-debugging process for ‘hard to debug’ type 22
5.1 Laplace test data trend 29
5.2 Non-cumulative testing-effort curves 31
5.3 Cumulative testing-effort curves 31
5.4 Non-cumulative reliability data curves, 35

5.5 Cumulative reliability data curves 35
5.6 Laplace test data trend 37
5.7 Non-cumulative testing-effort curves 39

5.8 Cumulative testing-effort curves 39
5.9 Non-cumulative reliability data curves 43

5.10 Cumulative reliability data curves 43
5.11 Laplace test data trend 45
5.12 Non-cumulative testing-effort curves 47

5.13 Cumulative testing-effort curves 47
5.14 Non-cumulative reliability data curves 51

5.15 Cumulative reliability data curves 51

www.manaraa.com

X

Appendices list

Appendix Description Page
A PL/I application program 61
B Space Shuttle Software System 62
C Defense, Ground Based Radar Software

System
63

www.manaraa.com

XI

Abstract

 The present scenario of software development life-cycle has switched into

a distributed environment because of the development of network technology and

ever increased demand of sharing the resources to optimize the cost. In the

software reliability engineering literature, few attempts have been made to model

the fault testing and debugging process in a distributed development

environment.

As the area of software fault-debugging in distributed development

environment is not thoroughly investigated in current literature, even though it is

estimated to have been one of the most expensive endeavor in the industry. This

objective dictates developing a novel testing-effort dependent software-reliability

modelling approach for distributed-systems developed under imperfect-

debugging environment. Fault-debugging process and testing-effort expenditures

are described by a non-homogenous Poisson process and testing-effort curve

functions respectively. The resultant integrated modelling approach proves to be

conducive for obtaining several models by following a single methodology and

thus present a perspective investigation for studying of general models without

making many assumptions.

To the best of our knowledge this is the first time that this kind of integration

modelling approach has been carried out for distributed systems that describes

the relationship among the calendar time, the testing-effort consumption, and

fault- correction/debugging process under imperfect-debugging environment.

Actual software reliability data cited in literature have been employed to

demonstrate the applicability of the proposed integrated modelling approach. The

results are fairly encouraging and plausible when compared with well-

documented modeling-approach.

Key-Words: software engineering, software testing, imperfect debugging,

testing-effort, Laplace test.

www.manaraa.com

1

Chapter 1

Introduction and Overview

Developing large-scale distributed software system is generally a quite

complex and time consuming process. Due to their development complexity,

these systems are hardly ever “perfect” (Lavinia et al., 2011). They are developed

using the classical software engineering activities (Shatnawi, 2013). However,

the nature and complexity of their requirements have drastically changed and

users all over the world have become much more demanding in terms of cost,

schedule and quality. Several techniques available for investigating the

cost/schedule of software; however, reliability is most important attributes of

software quality (Musa et al., 1987).

1.1 Software Reliability

Software is an integral part of any computer system. The level of cost, schedule,

and quality are the very important characteristics of software products. Nowadays

several techniques exist for investigating the cost and schedule of software;

however, reliability is the most important attribute of quality to measure software

quality. The study of software reliability is important as it has direct affect the cost

and time to delivery.

Software Reliability should be defined as the probability of failure-free software-

operation for a specified-period of time in a specified-environment (ANSI/IEEE,

1991).

The objective of software testing and debugging phase in the software-

development-process is detecting and correcting faults, to make the software

more reliable.

www.manaraa.com

2

Software-reliability-models are utilized for assessing the degree of achievement

of software-quality, deciding the time to software release for operational use, and

evaluating the maintenance cost for faults undetected during the testing-phase

(Yamada, 2014).

Software reliability quantities have generally been defined with respect to time.

There are three kinds of time:

 the execution-time, the actual CPU time spent by the processor in

executing the program,

 the calendar-time, the familiar time we experience, and

 the clock-time, the time from the beginning to the end of program

execution.

Experimentation has shown that models based on execution time are superior to

those based on calendar-time or clock-time.

 The aim of software quality/reliability measurement and assessment (Yamada,

2014) is illustrated in Figure 1.1.

www.manaraa.com

3

Fig. 1.1 Aim of software quality/reliability measurement

Software reliability is generally accepted as the key factor in software quality since

it quantifies software failures—the most unwanted event which makes software

useless or even harmful to the whole system and malfunctioning software may

kill people. As a result, it is regarded the most important factor contributing to

customer satisfaction. In fact, ISO 9000-3 specifies field failures as the basic

requirement for quality metrics (Lyu, 1996). Software reliability measures can be

used for system engineering, project management during development, and

software management during operational use, and evaluation of software

engineering technologies (Musa et al., 1987).

www.manaraa.com

4

1.2 Software Reliability Modelling Types

Software reliability modelling has become one of the most important aspects in

software reliability engineering. There are two main types of software reliability

models: the deterministic and the probabilistic, more details can be found in

(Kapur et al.; 2011; Pham, 2006). The deterministic model is used to study the

number of distinct operands in a program as well as the number of errors and the

number of machine instructions in the program. Performance measures of the

deterministic type are obtained by analyzing the program texture and do not

involve any random event. The probabilistic model represents the failure

occurrences and the fault removals as probabilistic events.

The Probabilistic Software Reliability Models can be classified into different

groups:

 Error Seeding Models

 Failure Rate Models.

 Curve Fitting Models.

 Reliability Growth Models.

 Markov Structure Models

 Non-Homogeneous Poisson Process (NHPP) Models.

1.3 Non-Homogeneous Poisson Process Models

Stochastic processes are used for the description of a system’s operation over

time. There are two main types of stochastic processes: continuous and discrete.

Among discrete processes, counting processes in reliability engineering are

widely used to describe the appearance of events in time (e.g., failures, number

of perfect repairs, etc.). The simplest counting process is a Poisson process.

www.manaraa.com

5

 The Poisson process plays a special role to many applications in reliability

engineering.

As a general class of well-developed stochastic process model in reliability

engineering, non-homogeneous Poisson process models have been successfully

used in studying hardware reliability problems. They are especially useful to

describe software fault debugging-process or fault-correction phenomena which

possess certain trends such as reliability-growth or deterioration. Therefore, an

application of non-homogeneous Poisson process models to software reliability

analysis is then easily implemented. Other important advantages of non-

homogeneous Poisson process models which should be stressed here are that

non-homogeneous Poisson process models are closed under superposition and

time transformation. We can easily incorporate two or more existing non-

homogeneous Poisson process models by summing up the corresponding mean

value functions. It is worth mentioning that the non-homogeneous Poisson

process models are capable of coping with the case of non-homogenous testing

and hence it is useful for a calendar time data as well as for the execution time

data.

The term ‘non-homogeneous’ implies that the characteristics of the probability

distributions that describe the random variables representing the testing and

debugging processes vary with time. This variation of failure intensity in time is to

be expected since faults are being corrected and/or introduced in a program as

time passes. Numerous non-homogeneous Poisson process based models have

been formulated to assess software reliability (Kapur et al., 2011; Ahmad et al.,

2010; Shatnawi, 2014, 2016; Idris, 2009).

www.manaraa.com

6

1.4 Testing-Effort Modelling

Testing and debugging phase in the software-development-process aims at

detecting and correcting faults, and hence making reliable software. The testing

and debugging phase, which aims to improve the reliability of a software system,

is the most costly, time-consuming phase among the four phases. About half of

the resources consumed during the software development cycle are testing

resources (Ohtera & Yamada, 1990; Shatnawi, 2013). Due to the increased size

of the software, effective utilization of resource has become even more important

than before (Wang et al., 2010).

In reality, no software manager/developer is going to spend-infinite-resources on

testing/debugging software. Testing resources include execution time, man

power etc that affects reliability. The function that describes how testing

resources are distributed is usually referred to as testing effort function and it has

been incorporated into software reliability modelling (Peng et al., 2014).

In software reliability literature, testing-effort curves (viz, as exponential,

Rayleigh, Weibull, logistic etc) have been employed in the literature to

measure testing resources (Yamada et al., 1985; Kuo et al., 2001; Huang et al.,

2007; Kapur et al., 2008; Shatnawi 2013). The exponential and Rayleigh can be

modelled as, "the testing-effort consumption rate is proportional to the testing

resources available"

𝜕

𝜕𝑡
𝑊𝑡 = 𝑐(𝑡) ∙ (𝑑 −𝑊𝑡) (1.1)

Solving (1.1) under initial condition 𝑊𝑡=0 = 0, yields

 𝑊𝑡 = 𝑑 ∙ (1 − exp(∫ 𝑐(𝑥) ∙ 𝑑𝑥
𝑡

0
)) (1.2)

www.manaraa.com

7

Case 1: If 𝑐(𝑡) = 𝑐, the testing-effort expenditures follows an exponential curve:

 𝑊𝑡 = 𝑑 ∙ (1 − exp(−𝑐 ∙ 𝑡)) (1.3)

Case 2: If 𝑐(𝑡) = 𝑐 ∙ 𝑡, the testing-effort expenditures follows a Rayleigh type

curve: 𝑊𝑡 = 𝑑 ∙ (1 − exp(−𝑐∙𝑡2

2
)) (1.4)

Case 3: If 𝑐(𝑡) = 𝑐 ∙ 𝑟 ∙ 𝑡𝑟−1, the testing-effort expenditures follows a Weibull

function:

𝑊𝑡 = 𝑑 ∙ (1 − exp(−𝑐 ∙ 𝑡𝑟)) (1.5)

Case 4: If 𝑐(𝑡) = 𝑐 ∙
𝑊𝑡

𝑑
, the testing-effort expenditures follows a logistic function:

𝑊𝑡 =
𝑑

1+𝑟∙exp(−𝑐∙𝑡)
 (1.6)

It is worth mentioning that Rayleigh and exponential testing-effort consumption

curves are a special cases of the Weibull testing-effort consumption curve.

1.5 Challenges Facing Software Reliability

As software is created by error-prone humans, and there is no way to

prevent programmes from making mistakes. Faults can be introduced during the

software development-lifecycle. Therefore, it is impossible to guarantee a failure-

free software system (Lyu, 2007). In software reliability engineering literature,

fault-debugging is challenging, and least developed. Software fault-debugging

process is the process of detecting, locating, and correcting faults in software

(IEEE, 1990). Approximately 20% of all software faults take 80% of all the

required effort to analyse, isolate and correct software faults (Boehm and Basili,

2001). Software-failure is estimated to cost American industries USD 60 billion

per year (Tassey, 2002). Jones state that imperfect-debugging phenomenon

www.manaraa.com

8

 were discovered in most software-development-companies (Jones,

2008). Reusability is a key direction to improving software development

productivity and quality (Shatnawi, 2013; 2017). Due to high demand on quality

and productivity in social systems, measuring reliability of software systems in

distributed development environment is major concern for software developers

(Tamura et al., 2006).

1.6 Thesis objective

This study has attempted to develop an integrated modelling approach, so

as to capture different reliability growth curves ranging from exponential to highly

S-shaped and incorporates the effect of software fault- correction/debugging

complexity with time-dependent variation in testing-effort consumption for

distributed systems developed under imperfect-debugging environments. Such

approach is very much suited also for object-oriented software development

environment.

1.7 Structure of the Thesis

The following is a brief of the remaining Chapters:

www.manaraa.com

9

Chapter 2 reviews some of the well-documented and established non-

homogenous Poisson process based software reliability model for

software quality/reliability measurement and assessment in a

distributed development environment.

Chapter 3 proposes a newly developed quantitative technique for software

quality/reliability measurement and assessment model.

Chapter 4 defines the technique that has been employed for parameter

estimation and software reliability data analyses, and provides the

comparison criteria used for validation/evaluation.

Chapter 5 presents the applications of the proposed integrated modelling

approach to actual software reliability data through data analyses

and model comparisons.

Chapter 6 concludes and identifies possible avenues for future research.

www.manaraa.com

10

Chapter 2

Software Reliability Modelling in Distributed Development

 Environment: Literature Review

Software reliability models are useful in measuring reliability for the quality

control and testing process control of software development. Many models have

been proposed by many researchers. A few models have actually been applied

to several software management tools which aid the software quality or reliability

measurement and testing–progress control in the testing phase.

All models discussed in this Chapter are based on non-homogeneous Poisson

process because they can be easily applied in actual software development.

Therefore, they are very useful in describing testing and debugging processes.

2.1 Software Reliability Modelling

The non-homogenous Poisson process based models that explain the software

reliability-growth-phenomenon or fault-debugging-process in distributed

development environment can be of two categories:

 Time-dependent behavior of fault-correction process. That is the

number of software faults being corrected is proportional to the remaining

faults.

 Yamada et al. (2000) Model

 Kapur et al. (2009a) Model

 Kapur et al. (2009b) Model

 Time-dependent variation in testing-effort consumption. That is, the

number of faults being corrected by the current testing-effort expenditures

at any time is proportional to the remaining number of faults.

www.manaraa.com

11

 Kapur et al. (2004) Model

 Shatnawi (2013) Model

Some of the general assumptions (apart from some special ones for specific

models discussed) assumed in the models are as follows:

 Fault-debugging-process follows non-homogenous Poisson process.

 Software reliability growth phenomenon in the re-used components is

uniform (i.e., follows an exponential growth curve) while in the newly-

developed component is not (i.e., follows an S-shaped growth curve).

 Fault-correction phenomena for re-used and newly-developed

components has been modelled individually and is summed up to get the

total fault-correction phenomenon of the software system.

The following are some of non-homogeneous Poisson process based software-

reliability-models were proposed for distributed development environment.

2.1.1 Yamada et al. (2000) Model

This model was a pioneering attempt in the field of software reliability modeling

and paved the way for measuring reliability in distributed development

environment. The model incorporates the exponential software reliability growth

model (Goel and Okumoto, 1979) and the delayed S-shaped software reliability

growth model (Yamada et al., 1983).

www.manaraa.com

12

2.1.2 Kapur et al. (2004) Model

The model describes the reliability-growth-phenomenon with respect to the

testing-effort consumptions. The author incorporates a time-dependent fault

removal rate in the newly developed software sub-system with respect to testing-

effort. This can account for learning which increases with testing and debugging

time.

2.1.3 Kapur et al. (2009a) Model

The unified framework describes the fault-correction process using unified

modelling approach. Using this generalized approach, a wide range of models

(existing as well as new) can be developed for different design environment.

2.1.4 Kapur et al. (2009b) Model

The model describes the software reliability growth phenomenon considering two

types of imperfect-debugging-process. The first type of imperfect-debugging is

where all detected errors are not removed completely resulting in the same fault

content of the software. The second type, known as error-generation, describes

the situation when each error removal attempt increases the fault content of the

software. For newly developed component, it is assumed that removal process

follows logistic growth curve due to the fact that learning of removal team grows

as testing progresses.

2.1.5 Shatnawi (2013) Model

The model integrates testing-effort function into Yamada et al. (2000) model to

get a better description of the software fault-correction process. To relax the pre-

specified fault-content-weight or testing-weight parameters for each software

www.manaraa.com

13

component that has been adopted in the aforementioned models. The author

assumed that the ratio of fault-density and the amount of testing-effort

expenditure in re-used to newly-developed modules is about 1 to 4, as reported

“the defect rate for reused code is 0.9 defects per kilo line of code (KLOC), while

the rate for newly developed software is 4.1 defects per KLOC in a study

conducted at Hewlett-Packard (HP)” (Lim, 1994; Shatnawi, 2013).

2.2 Study Motivation

The aforementioned software reliability models are constructed considering

the debugging scenarios as tabulated in Table 2.2.1. However, none of them

provide insightful interpretations for both the testing-effort expenditure and

imperfect-debugging phenomena during testing and debugging phase. A

proposed solution is developing an integrated modelling approach.

Therefore, this study has attempted to develop an integrated modelling

approach, so as to capture different reliability growth curves ranging from

exponential to highly S-shaped and incorporates the effect of software fault-

correction/debugging complexity with time-dependent variation in testing-effort

consumption for distributed systems developed under imperfect-debugging

environments. Such in approach is very much suited also for object-oriented

software development environment. Because object-oriented based on client-

server idea, therefor it is a distributed environment.

www.manaraa.com

14

Table 2.1 Models under comparison

Modelling

Approach

NHPP Calendar-

Time

Testing-Effort

(CPU time)

Imperfect-

Debugging

Yamada et al. (2000) √ √

Kapur et al. (2004) √ √ √

Kapur et al. (2009a) √ √

Kapur et al. (2009b) √ √ √

Shatnawi (2013) √ √ √

Proposed √ √ √ √

To the best of our knowledge this is the first time that this kind of non-

homogenous Poisson process based integration modelling approach that

describes the relationship among the calendar time, the testing-effort

consumption, and fault- correction/debugging process under imperfect-

debugging environment, has been studied for distributed systems.

2-3 Study Methodology

• Step 1- Study software reliability data: The models require that

software reliability data be available. The first step in developing a model is to

carefully study such data in order to gain an insight into the nature of the process

being modeled. It is highly desirable to plot the data as a function of, say, calendar

time, execution time, or number of test cases executed. The objective of such

plots is to try to determine the appropriate variables to use in the model.

Sometimes it is desirable to model several such combinations and then use the

www.manaraa.com

15

• fitted models for answering a variety of questions about the failure

process. Occasionally, it may be necessary to normalize the data to, for example,

account for changes in system size during testing.

• Step 2- Formulate a Reliability Model: The next step is to construct

an appropriate model based upon an understanding of the software technology,

testing process, and development environment. The data and plots from Step 1

are likely to be very helpful in this process.

• Step 3- Obtain Estimates of Model Parameters: Different methods

are generally required depending upon the nature of available data. The most

commonly used one is the method of maximum likelihood because it has very

good statistical properties. However, sometimes, the method of least squares or

some other method may be preferred.

• Step 4- Obtain the Fitted Model: The fitted model is obtained by

substituting the estimated values of the parameters in the developed model. At

this stage, we have a fitted model based on the available failure data.

• Step 5- Perform Goodness-of-Fit Test: Before proceeding further, it

is advisable to conduct suitable goodness-of-fit test to check the model fit. If the

model fits, i.e., if it is a satisfactory descriptor of the observed failure process, we

can move ahead. However, if the model does not fit, we have to collect additional

data or seek a better, more appropriate model. There is no easy answer to either

how much data to collect or how to look for a better model. Decisions on these

issues are very much problem dependent and require a clear understanding of

the models and the software development environment.

www.manaraa.com

16

• Step 6- Obtain Estimates of Performance Measures: At this stage,

we can compute various quantitative measures to assess the performance of the

software system.

• Step 7- Decision Making: The ultimate objective of developing a

model is to use it for making some decisions about the software system, e.g.,

whether to release the system or continue testing. Such decisions are made at

this stage of the modeling process based on the information developed in the

previous steps.

www.manaraa.com

17

Chapter 3

Testing-Effort Dependent Software Reliability Modelling for

Distributed Systems in Imperfect-Debugging Environment:

A Proposed Integrated Approach

Distributed systems are being developed using the classical software engineering

activities (Shatnawi, 2013). Debugging is one of the most challenging, and least

developed areas of software engineering. Software developers spend about 35-

50 percent of their time debugging software. The cost of debugging and testing

is estimated for 50-75 percent of the total budget of software development

projects, amounting to more than $100 billion annually (Chmiel and Loui, 2004;

O’Dell, 2007). Software development still at nascent stage and has a long way to

go for confirm success of projects. Therefore, it is impossible to guarantee a

failure-free software system (Lyu, 2007) and absent of imperfect-debugging

phenomenon in almost every project (Jones, 2008).

The software debugging-process aims at detecting and correcting faults in

order to improve the software reliability, which can be modelled by a

mathematical relationship called a software reliability model. As already stated in

Chapter 1 these models are used to measure software reliability and can plot the

reliability the trends that are used to forecast the number of fault-corrected as a

function of time. Execution time based models are superior to those based on

calendar-time or clock-time (Musa et al., 1987). These models show how

software reliability improves as the faults are detected and corrected. The testing

and debugging activities in perfect and imperfect-debugging environments (Lin,

2011) are depicted in Figure 3.1 and 3.2 respectively.

www.manaraa.com

18

Fig. 3.1 Testing and perfect-debugging activities

Fig. 3.2 Testing and imperfect-debugging activities

The main objective of this study is to construct/develop a software reliability model

based on more realistic assumptions depicting different phenomena during the

testing and debugging phase in a distributed development environment

 The first step in achieving this objective is to identify the unrealistic

assumptions which existing models are based on.

 The second step is to build flexible model which relax these assumptions.

The following are some of unrealistic assumptions

1. All faults are of the same type, complexity and have the same impact on

the reliability growth.

2. Testing-effort employed to detect, locate and correct the faults has the

same consumption pattern.

3. Pre-specified testing-weight parameters for each software component.

www.manaraa.com

19

To address these unrealistic issues, a newly developed software reliability model

for distributed system, through an integrated modelling approach incorporating

fault-debugging complexity with time-dependent variation in testing-effort

consumption under imperfect-debugging environment is proposed.

3.1 Assumption and Notations

The following are the assumptions adopted for formulation of the proposed

integrated modelling approach:

1. Testing resource is not constantly allocated during software testing phase,

which can largely influence the debugging-process.

2. The debugging-process consists of three stages namely, fault-detection,

fault-location and fault-correction. That is, each time a failure is reported,

an immediate or delayed-effort takes place to correct it. Accordingly, the

faults are classified into three types: easy, medium, and hard, according to

their debugging-correction complexity.

3. The ratio of fault density and the amount of testing-effort expenditure in

reused to newly developed components is about 1 to 4 (Lim, 1994;

Shatnawi, 2013).

4. The debugging-team may not be able to correct the fault and the fault may

remain or get replaced. While the first phenomenon is known as imperfect-

debugging, the second is called error-generation.

5. Newly developed component contains “medium & hard “ types of faults,

while reused component contains only “easy “type of fault “.

www.manaraa.com

20

The following notations are used for the mathematical formulation purpose:

𝑚𝑤𝑡
 Expected number of faults debugged in time-dependent variation in

testing-effort consumption (0,𝑊𝑡]

𝑖, 𝑗 Subscripts that denotes the re-used and newly-developed components

𝑚𝑖 Expected number of faults debugged in re-used modules

𝑚𝑗 Expected number of faults debugged in newly-developed modules

𝑊𝑡 Amount of testing-effort consumed in the time interval (0, 𝑡]

𝑊𝑖,𝑗 Expected effort spent on modules debugging 𝑊𝑖 = 𝑊𝑡 ∙ 𝑔𝑖; 𝑊𝑗 = 𝑊𝑡 ∙ 𝑔𝑗

𝑤𝑖,𝑗 Current effort spent on modules debugging, that is, 𝑊𝑡 = ∫𝑤𝑥 ∙ 𝑑𝑥

𝑔𝑖,𝑗 Proportion of effort spent on modules debugging 0 ≤ 𝑔𝑖(𝑔𝑗) ≤

0.2(0.8);∑𝑔𝑖,𝑗 = 1

𝑎 Total number of faults lying dormant in software ∑𝑎𝑖,𝑗 = 𝑎

𝑎𝑖 Initial fault-content in re-used modules 𝑎𝑖 = 𝑎ℎ𝑖

𝑎𝑗 Initial fault-content in newly developed modules 𝑎𝑗 = 𝑎ℎ𝑗

ℎ𝑖,𝑗 Proportion of fault-content in modules 0 ≤ ℎ𝑖(ℎ𝑗) ≤ 0.2(0.8);∑ ℎ𝑖,𝑗 = 1

𝑝 Probability of fault removal on a detection of a fault

𝛼 Rate at which faults may be introduced during the debugging-process

𝑐𝑡 Time dependent rate at which testing resources are consumed, with

respect to remaining available resources

𝑎, 𝑐, 𝑟 Constant parameter in testing-effort functions

www.manaraa.com

21

3.2 Formulation

Modelling the Imperfect Fault-Debugging-Process of ‘i’ Reused

Components. To model the fault correction process of ‘i’ re-used components,

the imperfect-debugging-model with testing-effort (Kapur et al., 2011; 2009) is

selected. The selected model assumed that faults are of type ‘easy to debug, and

their debugging-process is modeled as one-stage process. That is, once the

failure is reported that fault that caused it, is corrected immediately without delay

as illustrated in Figure 3.3. The model is given as

𝑚𝑤𝑡𝑖
=

𝑎𝑖

1−𝛼𝑖
∙ (1 − 𝑒−𝑝𝑖∙𝑏𝑖∙

(1−𝛼𝑖)∙𝑤𝑡𝑖) (3.1)

The above mean-value-function in (.3 1) represents the expected number of faults

corrected.

Fig. 3.3 Fault-debugging-process for ‘easy to debug’ type

www.manaraa.com

22

Modelling the Imperfect Fault-Debugging-Process of ‘j’ Newly Developed

Components. To model the fault correction process of ‘j’ newly developed

components, the imperfect-debugging-model with testing-effort (Kapur et al.,

2011; 2009) is adopted for the purpose. The adopted model assumed that faults

are of two types: ‘medium to debug and ‘hard to debug’, and their debugging-

process is modeled as two-stage process and three-stage process receptively.

That is, once the failure is reported that fault that caused it, is corrected with

different time-delay.

For ‘medium to debug’ faults, the imperfect debugging-process is modeled as a

two-stage process—fault detection followed by correction as illust

rated in Figure 3.4. The mean-value-function for components containing ‘medium

to debug faults is given as

𝑚𝑤𝑡𝑗
=

𝑎𝑗

1−𝛼𝑗
∙ (1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗

) ∙ 𝑒
−𝑏𝑗∙𝑤𝑡𝑗)

𝑝𝑗∙(1−𝛼𝑗)

) (3.2)

Fig. 3.4 Fault-debugging-process for ‘medium to debug’ type

For ‘hard to debug’ faults, the imperfect-debugging-process is modeled as a

three-stage process—fault detection, isolation followed by correction as

illustrated in Figure 3.5. The mean-value-function for components containing

‘hard to debug faults is given as

www.manaraa.com

23

𝑚𝑤𝑡𝑗
=

𝑎𝑗

1−𝛼𝑗
∙ (1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗

+ 𝑏𝑗
2
∙
𝑤𝑡𝑗

2

2
) ∙ 𝑒

−𝑏𝑗∙𝑤𝑡𝑗)

𝑝𝑗∙(1−𝛼𝑗)

)

(3.3)

Fig. 3.5 Fault-debugging-process for ‘hard to debug’ type

The total imperfect-debugging of ‘j’ newly developed components is the

superposition of the sum of the two debugging-process with mean-value-

functions given in (3.2) and (3.3) respectively, as

𝑚𝑤𝑡𝑗
=

𝑎𝑗

1−𝛼𝑗
∙ (1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗) ∙ 𝑒

−𝑏𝑗∙𝑤𝑡𝑗)
𝑝𝑗∙(1−𝛼𝑗)

)+

𝑎𝑗

1−𝛼𝑗
∙ (1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗 + 𝑏𝑗

2 ∙
𝑤𝑡𝑗

2

2
) ∙ 𝑒

−𝑏𝑗∙𝑤𝑡𝑗)

𝑝𝑗∙(1−𝛼𝑗)

) . (3.4)

www.manaraa.com

24

3.3 Modelling the Total Imperfect Fault-

Debugging-Process

The proposed modelling approach for software developed in distributed

environment is the superposition of the sum of the total debugging-process of ‘i’

reused and ‘j’ newly developed components with mean-value-function given in

(3.1) and (3.4) respectively, as

𝑚𝑤𝑡
= ∑ 𝑚𝑤𝑡𝑖

𝑛
𝑖=1 + ∑ 𝑚𝑤𝑡𝑗

𝑚
𝑗=𝑛+1

𝑚𝑡 = ∑
𝑎𝑖

1−𝛼𝑖
∙ (1 − 𝑒−𝑝𝑖∙𝑏𝑖∙(1−𝛼𝑖)∙𝑤𝑡𝑖)𝑛

𝑖=1 +

∑
𝑎𝑖

1−𝛼𝑖
∙ ((1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗) ∙ 𝑒

−𝑏𝑗∙𝑤𝑡𝑗)
𝑝𝑗∙(1−𝛼𝑗)

)𝑚
𝑗=𝑛+1

+

(1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗 + 𝑏𝑗
2 ∙

𝑤𝑡𝑗
2

2
) ∙

𝑒
−𝑏𝑗∙𝑤𝑡𝑗)

𝑝𝑗∙(1−𝛼𝑗)

)) (3.5)

This proposed modelling approach given above in (3.5) is very interesting from

various points of view. Besides its interpretation, it has the models (Goel and

Okumoto, 1979; Yamada et al., 1992; Kapur et al. 1999; Yamada et al., 2000;

Kapur et al. 2011; Shatnawi, 2013) as special cases. Thus, highlight it is flexibility

and applicability.

www.manaraa.com

25

Chapter 4

Model Validation and Comparison Criteria

To check the validity of the models under comparisons including the

proposed modeling approach given previously in chapter (3) to describe

reliability-growth, it has been tested on three software reliability datasets obtained

from actual software-development-project. The first data-set was collected during

19 weeks of testing, 328 faults were detected (Ohba, 1984). The second data-

set was collected during 38 weeks of testing, 231 faults were detected (Misra,

1983). The fourth data-set was collected during 35 months of testing, 1301 faults

were detected (Brooks and Motely, 1980). These data-set were deliberately

chosen from different testing environments where the growth curves range from

exponential to highly S-shaped (for more details refer to Appendix).

For model validation and evaluation, we consider a simple case in which

the software system composed of two re-used components and two newly-

developed

𝑚𝑤𝑡
= ∑ 𝑚𝑤𝑡𝑖

2
𝑖=1 + ∑ 𝑚𝑤𝑡𝑗

4
𝑗=3

𝑚𝑡 = ∑
𝑎𝑖

1−𝛼𝑖
∙ (1 − 𝑒−𝑝𝑖∙𝑏𝑖∙

(1−𝛼𝑖)∙𝑤𝑡𝑖)2
𝑖=1 +

∑
𝑎𝑗

1−𝛼𝑗
∙ ((1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗

) ∙ 𝑒
−𝑏𝑗∙𝑤𝑡𝑗)

𝑝𝑗∙(1−𝛼𝑗)

)4
𝑗=3 +

www.manaraa.com

26

where

𝑎1 = 𝑎 ∙ ℎ1; 𝑎2 = 𝑎 ∙ ℎ2 = 𝑎 ∙ (. 2 − ℎ1); 𝑎3 = 𝑎 ∙ ℎ3; 𝑎4 = 𝑎 ∙ ℎ4 = 𝑎 ∙ (. 2 − ℎ3);

∑ 𝑎𝑘 = 𝑎;𝑏1 = 𝑏2; 𝑏3 = 𝑏4;
4
𝑘=1

𝑊𝑡(1) = 𝑊𝑡 ∙ 𝑔1; 𝑊𝑡(2) = 𝑊𝑡 ∙ 𝑔2 = 𝑊𝑡 ∙ (. 8 − 𝑔1);

∑ 𝑊𝑡(𝑘) = 𝑊𝑡
4
𝑘=1

4.1. Software Reliability Data Analysis Technique

Prior to employing software reliability modelling approach to software

reliability data it is important to check out whether the reliability data shows

growing behaviour with time, If the data does not show growing behaviour with

time, then software reliability modelling should not be applied for estimation

reliability of the system Kanoun et al. (1997) and they used Laplace test for this

purpose. Let 𝑛𝑖 represents the number of faults corrected in time 𝑖(𝑖 =

1,2,3, … , 𝑘), then Laplace factor can be obtained as

 𝑢𝑘 =
∑ (𝑖−1)𝑘
𝑖=1 𝑛𝑖−

𝑘−1

2
∑ 𝑛𝑖
𝑘
𝑖=1

√𝑘2−1

2
∑ 𝑛𝑖
𝑘
𝑖=1

 (4.2)

Negative values represent a reliability-growth, otherwise positive values suggest

a reliability decline, and the range of values below positive 2 and above negative

2 represents stablility.

(1 − ((1 + 𝑏𝑗 ∙𝑤𝑡𝑗 + 𝑏𝑗
2
∙
𝑤𝑡𝑗

2

2
) ∙ 𝑒

−𝑏𝑗∙𝑤𝑡𝑗)

𝑝𝑗∙(1−𝛼𝑗)

))

(4.1)

www.manaraa.com

27

4.2 Model Validation and Evaluation

We evaluate the performance (i.e., goodness-of-fit) of the models under

comparison using mean-square-fitting-error, Bias, Variation, and root-mean-

square-prediction-error metrics. The smaller the metric value the better (Kapur et

al., 2011; Shatnawi, 2016).

 The mean-square-fitting-error (MSE) or long-term predictions is defined

by (Lyu, 1996) as

 𝑀𝑆𝐸 =
1

𝑘
∑ (�̂�𝑡𝑖

− 𝑥𝑖)
2𝑘

𝑖=1 (4.3)

where �̂�𝑡𝑖
 is the mean number of faults at time 𝑡𝑖 estimated by a model, 𝑥𝑖 is the

expected number of faults corrected at time 𝑡𝑖, and 𝑘 is the number of

observations.

 The Akaike Information Criterion (AIC) is defined by Khoshogoftaar &

Woodcock (1991) as

 𝐴𝐼𝐶 = −2 × 𝑙𝑜𝑔(max𝑜𝑓𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) + 2 × 𝑁 (4.4)

where N is the number of the parameters used in the model.

 Bias. is given as,

 𝐵𝑖𝑎𝑠 =
1

𝑘
∑ 𝑃𝐸𝑖
𝑘
𝑖=1 (4.5)

where 𝑃𝐸𝑖 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑖

 Variation is given as,

 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = √
1

𝑘−1
∑ (𝑃𝐸𝑖 − 𝐵𝑖𝑎𝑠)2𝑘
𝑖=1 (4.6)

www.manaraa.com

28

 Root-Mean-Square-Prediction-Error (RMSPE) is a way of measuring how

good a model is over the actual data.

 𝑅𝑀𝑆𝑃𝐸 = √(𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛2) (4.7)

Other than these metrics used in comparing models. (Musa et al., 1987) have

suggested the following attributes for choosing a model:

 Capability. The model should possess the ability to estimate with

satisfactory accuracy metrics needed by the software managers,

 Quality of Assumptions. The model assumptions should be plausible

and must depict the testing environment,

 Applicability. A model can be judged as the better one if it can be applied

across software products of different sizes, structures, platforms and

functionalities.

 Simplicity. The data required for an ideal SRGM should be simple and

inexpensive to collect. The parameters should not be estimation should not be

too complex and is easy to understand and apply even for persons without

extensive mathematical background.

4.3 Parameter Estimation Techniques

To carry out the estimation part of software modelling, we employ the

statistical-package-for-social-sciences (SPSS) based on the nonlinear-

regression-technique.

www.manaraa.com

29

Chapter 5

Data Analyses and Model Comparisons

For model validation and evaluation, we consider a simple case in which

the software system composed of two reused software components and two

newly developed. Three reliability data collected from actual software-

development-project, have been analyzed and employed to show the applicability

of the proposed modeling-approach. As these reliability data-set were extensively

studied (Yamada et al., 2000; Tamura et al., 2006; Kapur et al., 2009a; Kapur et

al., 2009b; Shatnawi, 2013), direct comparison with the work of other can be

made. In this study, we treat these reliability data-set as they were observed from

the testing phase after confirmation of the integration of all software components.

5.1 First-Software-Development-Project

The first software reliability data had been obtained during 19 weeks of

testing/debugging of PL/I application program test data of size 1,317,000 lines of

code (LOC). Over the course of 19 weeks, 47.65 CPU hours were consumed,

and 328 software faults were reported (for more details see Appendix A).

Figure 5.1 traces the Laplace-trend-test. Prior to the 17th week, the trend test

values indicate stable reliability. It is clearly seen reliability fluctuations for the 5th

week and 6th week. However these fluctuations does not last for long time.

Therefore, we should not pay attention to it. Stable reliability trend indicates that

the corrective actions have no visible effect on reliability.

www.manaraa.com

30

 In such situation the testing and debugging team must introduce new test sets.

However, after the 16th week, the trend become-stable. In such situation the

system is used less or the reason behind this may also be due to unrecorded

faults. Therefore, the testing and debugging team must take particular care

(Kanoun et al., 1997).

Fig. 5.1 Laplace-test-data-trend

The resultant parameter estimation and the goodness-of-fit metrics in terms of

MSE, AIC, Bias, Variation, and RMSPE of the models under comparison are

tabulated in Table 5.1. According to Table 5.1, we can see that the logistic

function has lower MSE, AIC, bias, variation, and RMSPE metric values among

the testing-effort functions under comparison. Therefore, the comparison criteria

favour the logistic testing-effort function and, hence, adopted for further

evaluation. It is worth mentioning that the exponential function fails to give any

plausible estimation results.

www.manaraa.com

31

Table 5.1 Parameter estimation and comparison criteria metrics results

Testing-Effort Functions

Under Comparison

Parameter Estimation Comparison Criteria

D C r MSE AIC Bias Variation RMSPE

Exponential * * — * * * * *

Rayleigh 49.32 0.014 — 5.237 52.68 0.560 2.28 2.347

Weibull 799.22 0.002 1.115 15.65 45.67 3.362 4.12 5.318

Logistic 54.84 0.226 13.03 1.629 47.93 -0.062 1.310 1.311

 * the function fails to give any plausible result
 — the component is not part of the corresponding function

The fitting of the testing-effort functions under comparison to the actual non-

cumulative and cumulative testing-effort are graphically illustrated in Figure 5.2,

5.3 respectively. From the Figure 5.3, we can observe that the logistic testing-

effort function provides a better fit than the other functions under comparison.

Therefore, the logistic testing-effort function provides more accurate description

of resource consumption than other functions.

www.manaraa.com

32

Fig. 5.2 Non-cumulative testing-effort curves

 Fig. 5.3 Cumulative testing-effort curves

www.manaraa.com

33

The resultant parameter estimation of the proposed modeling apparoch is

tabulated in Table 5.2. According to the estimated values in Table 5.2, the

probability of perfect-debugging ‘p’ of the faults encountered in the re-used

components is lower than that encountered in the newly developed components.

According to the estimated values in Table 5.2, the error introduction or generated

rate ‘α’ the debugging-process doesn’t introduce any error for re-used

components but it is not the case for newly developed components.

It is calcualted that a total of 409 faults were detected in the 19 weeks including

108 faults were generated, and out of them, only 333 were perfectly debugged

and corrected in the same debugging-period as shown in Table 5.3. Besides, our

proposed modelling approach in Table 5.4reveals the number of faults detected

and how many of them were corrected for each type respectively.

As the software system composed of four components two of them are re-used

and the other two are newly developed. Tables 5.5 and 5.6, reveal very important

results that can be of immense-help to the developer and decision maker such

as the initial fault-content, amount of testing-effort expenditure, total number of

fault-content included the introduced errors due to imperfect-debugging

environment, number of fault introduced, and number fault corrected for each of

these modules.

www.manaraa.com

34

Table 5.2 Parameter estimation

Model

Parameter Proportion Parameter

a b1,2 p1,2 α1,2 b3,4 p3,4 α3,4 h1 h3 g1 g3

Proposed 300.64 .383 .501 0 .771 .988 .350 .200 .691 .142 .118

Table 5.3 Plausible Results

PL/I application program

Initial

Fault-Content

𝒂

Effort

Consumed

𝑾𝒕

Total

Fault-Content

𝒂𝑾𝒕
**

Fault

Introduced

𝒂𝑾𝒕
− 𝒂

Fault

Corrected

𝒎𝑾𝒕

Estimated 300.64 46.55 408.81 108.17 333.37

Reported* 328 47.65 — — —

 * refers to software reliability data (DS-I) in the Appendix

 — the component is not given in DS-I
 **𝑎𝑊𝑡

= 𝑎 + 𝛼 ∙ 𝑚𝑊𝑡
 given in (Kapur et al., 2009, 2011)

Table 5.4 Fault Type Content Results

Model

PL/I application program

Easy Faults Medium Faults Hard Faults

Detected 60.128 298.27 50.42

Corrected 24.313 258.64 50.41

www.manaraa.com

35

Table 5.5 Calculated Results for Re-used Components

Table 5.6 Calculated Results for Newly-Developed Components

The fitting of the proposed modeling approach to the actual non-cumulative and

cumulative software reliability data are graphically illustrated in Figure 5.4, 5.5

respectively. From Figure 5.5, we can observe that the estimated values (

cumulative number of corrected faults , as a result of our propsed model) are

very close to the actual software reliability data and therefore fits the data

excellently well.

As faults are corrected, the fault-correction intensity which represents the fault-

correction rate per fault per testing-effort weeks tends to drop and reliability tends

to increase. The changeability of this rate shown in Figure 5.4 may be attributed

to the imperfect-debugging phenomenon or fault debugging complexity.

Resulting in a step increase in fault-correction intensity and a step decrease in

Re-used Components

component 1 component 2

𝒂 𝑾𝒕 𝒂𝑾𝒕 𝒂𝑾𝒕
− 𝒂 𝒎𝑾𝒕 𝒂 𝑾𝒕 𝒂𝑾𝒕 𝒂𝑾𝒕

− 𝒂 𝒎𝑾𝒕

60.13 6.61 60.13 0 24.31 0 2.70 0 0 0

Newly-Developed Components

component 3 component 4

𝒂 𝑾𝒕 𝒂𝑾𝒕 𝒂𝑾𝒕
− 𝒂 𝒎𝑾𝒕 𝒂 𝑾𝒕 𝒂𝑾𝒕 𝒂𝑾𝒕

− 𝒂 𝒎𝑾𝒕

207.7 31.75 298.22 90.52 258.6 32.77 5.49 50.42 17.65 50.41

www.manaraa.com

36

reliability. Therefore, we have in Figure 5.4 a step increase or decrease in fault-

correction intensity. As fault-correction intensity is an alternative way of

expressing reliability and software reliability is the inverse of fault-correction

intensity. Therefore, both Figures commonly called reliability growth curves.

 Fig. 5.4 Non-cumulative reliability data curves

www.manaraa.com

37

 Fig. 5.5 Cumulative reliability data curves

The resultant goodness-of-fit metrics in terms of MSE, AIC, bias, variation and

RMSPE of the proposed model compared with other existing models are given in

Table 5.7. As given in Table 5.7, the overall values of MSE, bias, variance and

RMSPE for the proposed model are the lowest. As results of comparison, we may

conclude that the proposed modelling approach fits better than the other models

under comparison for this actual software reliability data.

www.manaraa.com

38

Table 5.7 Comparison criteria metric results

Models under

Comparison

Comparison Criteria

MSE AIC Bias Variation RMSPE

Yamada et al. (2000) 124.94 209.67 -0.231 11.48 11.49

Tamura et al. (2006) 351.72 140.15 — — —

Goswami et al. (2007) 38263.9 — 174.89 8105.18 8107.06

Kapur et al. (2009a) 41.70 — 0.448 112.41 112.42

Kapur et al. (2009a) 48.00 — 0.329 77.16 77.16

Kapur et al. (2009b) 35.72 — 0.07 37.69 37.69

Shatnawi (2013) 92.51 241.15 -0.5362 9.866 9.881

Proposed 78.12 232.16 -0.1796 9.079 9.081

 ___ the metric is not measured by the corresponding model

5.2 Second-Software-Development-Project

The Second software reliability data had been obtained during 38 weeks of

testing and debugging of space shuttle software system. Over the course of 38

weeks, 2456.4 CPU hours were consumed, and 231 software faults were

reported (for more details see Appendix B).

Figure 5.8 traces the Laplace-trend-test. The values of the trend test are

completely negative from beginning. There are fluctuations, but this fluctuation

does not drastically affect the reliability and the reliability growing behaviour.

Reliability growth may result from a period during which the system is

underutilized; it may also be caused by unrecorded faults. Therefore, the testing

and debugging team must take particular care (Shatnawi, 2016).

www.manaraa.com

39

Fig. 5.6 Laplace test data trend

The resultant parameter estimation and the goodness-of-fit metrics in terms of

MSE, AIC, Bias, Variation and RMSPE of the testing-effort functions under

comparison are tabulated in Table 5.9 According to Table 5.9, we can see that

the logistic function has lower MSE, AIC, bias, variation, and RMSPE metric

values among the testing-effort functions under comparison. Therefore, the

comparison criteria favour the logistic testing-effort function and, hence, adopted

for further evaluation. It is worth mentioning that the exponential function fails to

give any plausible estimation results.

www.manaraa.com

40

Table 5.8 Parameter estimation and comparison criteria metrics results

Testing-Effort

Functions

Under Comparison

Parameter

Estimation

Comparison Criteria

d c R MSE AIC Bias
Variatio

n

RMSP

E

Exponential * * — * * * * *

Rayleigh 2241 .0040 — 23666.8 1626.2 53.5 146.16 155.66

Weibull 5063 .0084 1.1639 4225.18 654.3 10.4 65.026 65.85

Logistic 2836 .0985 10.49 8982.06 1110.4 -8.2 95.69 96.04

 * the function fails to give any plausible result
 — the component is not part of the corresponding function

The fitting of the testing-effort functions under comparison to the actual non-

cumulative and cumulative testing-effort are graphically illustrated in Figures 5.7

,5.8 respectively. From Figure 5.8, we can observe that the Weibull testing-effort

function provides overall a better fit than the other functions under comparison.

Therefore, the Weibull function provides more accurate description of resource

consumption than other functions.

www.manaraa.com

41

Fig. 5.7 Non-cumulative testing-effort

Fig. 5.8 Cumulative testing-effort curves

www.manaraa.com

42

According to the estimated values in Table 5.9, the probability of perfect-

debugging or debugging-efficiency ‘p’ of the faults encountered in the re-used

components is higher than that encountered in the newly developed components.

According to the estimated values in Table 5.9, the error introduction or generated

rate ‘α’ per detected fault in the re-used components is higher than that in the

newly developed components.

It is estimated that a total of 380 faults were detected in the 38 weeks months

including 108 faults were generated, and out of them, only 218 were perfectly

debugged and corrected in the same debugging period as shown in Table 5.10.

Besides, our proposed modelling approach in Table 5.10, reveals the number of

faults detected and how many of them were corrected for each type respectively.

 Tables 5.11 and 5.12, reveal very important results that can be of immense-help

to the software developer and decision maker such as the initial fault-content,

amount of testing-effort expenditure, total number of fault-content included the

introduced errors due to imperfect-debugging environment, number of fault

introduced, and number of fault corrected for each of these modules.

www.manaraa.com

43

Table 5.9 Parameter estimation

Model

Parameter Proportion Parameter

A b1,2 p1,2 α1,2 b3,4 p3,4 α3,4 h1 h3 g1 g3

Proposed 355.39 .077 .815 .288 .011 .545 .009 .185 .659 .049 .027

Table 5.10 Plausible Results

Space Shuttle Software System

Initial

Fault-Content

𝒂

Effort

Consumed

𝑾𝒕

Total

Fault-Content

𝒂𝑾𝒕
**

Fault

Introduced

𝒂𝑾𝒕
− 𝒂

Fault

Corrected

𝒎𝑾𝒕

Estimated 355.39 2226.57 380.48 25.08 217.56

Reported* 231 2456.40 — — —

 * refers to software reliability data (DS-II) in the Appendix
 — the component is not given in DS-II
 **𝑎𝑊𝑡

= 𝑎 + 𝛼 ∙ 𝑚𝑊𝑡
 given in (Kapur et al., 2009, 2011)

Table 5.11 Fault Type Content Results

Model

Space Shuttle Software System

Easy Faults
Medium

Faults
Hard Faults

Detected 94.95 234.29 51.24

Correcte

d
82.88 125

9.68

Table 5.12 Calculated Results for Re-used Components

www.manaraa.com

44

Table 5.13 Calculated Results for Newly-Developed Components

The fitting of the proposed model to the actual non-cumulative and cumulative

software reliability data are graphically illustrated in Figure 5.9 ,5.10 respectively.

From Figure 5.10, we can observe that the estimated values are very close to the

actual software reliability data and therefore fits the data excellently well.

 The changeability of this rate shown in Figure 5.9 may be attributed to the

imperfect-debugging phenomenon or fault debugging complexity. Resulting in a

step increase in fault-correction intensity and a step decrease in reliability.

Therefore, we have in Figure 5.9 a step increase or decrease in fault-correction

intensity. As fault-correction intensity is an alternative way of expressing reliability

and software reliability is the inverse of fault-correction intensity. Therefore, both

Figures commonly called reliability growth curves.

Re-used Components

component 1 component 2

𝒂 𝑾𝒕 𝒂𝑾𝒕
 𝒂𝑾𝒕

− 𝒂 𝒎𝑾𝒕
 𝒂 𝑾𝒕 𝒂𝑾𝒕

 𝒂𝑾𝒕
− 𝒂 𝒎𝑾𝒕

65.75 336.2 72.79 7.04 58.42 5.33 109.1 22.16 19.04 24.46

Newly-Developed Components

component 3 component 4

𝒂 𝑾𝒕 𝒂𝑾𝒕 𝒂𝑾𝒕
− 𝒂 𝒎𝑾𝒕 𝒂 𝑾𝒕 𝒂𝑾𝒕 𝒂𝑾𝒕

− 𝒂 𝒎𝑾𝒕

234.2 1721 234.3 0.087 125 50.11 60.12 51.24 1.125 9.68

www.manaraa.com

45

Fig. 5.9 Non-cumulative reliability data curves

 Fig. 5.10 Cumulative reliability data curves

www.manaraa.com

46

The resultant goodness-of-fit metrics in terms of MSE, AIC, bias, variation and

RMSPE of the proposed model compared with other existing models are given in

Table 5.14. As given in Table 5.14, the values of MSE and AIC for the proposed

model are the lowest.

Since lower values are better, the comparsion criteria favour the proposed

modeling approach.

 As a results , we may conclude that the proposed modelling approach fits better

than the other models under comparison for this actual software reliability data.

Table 5.14 Comparison criteria metric results

Models under

Comparison

Comparison Criteria

MSE AIC Bias Variation RMSPE

Yamada et al. (2000) 859.80 258.23 — — —

Kapur et al. (2004) 663.34 215.72 — — —

Proposed 40.65 203.16 4.838 4.208 6.413

 — the metric is not measured by the corresponding model

5.3 Third Software Development Project

The third software reliability data had been obtained during 35 months of testing

and debugging of various stages of formal test and integration of a Defense,

Ground Based Radar software system of size 124K LOC. During the period,

1846.92 CPU hours were consumed, and 1301 software faults were reported (for

more details see Appendix C).

Figure 5.11 traces the Laplace trend test. Trend test indicates reliability decay,

which is expected and considered normal at the start of a new activity. Since the

decay has lasted for short period, it may neglect it. However, during the period

from the 7th month till 20th month, we have seen some fluctuations, but this

www.manaraa.com

47

fluctuation has no effect on reliability’s growing behavior. After that the behavior

reliability grew monotonically. Such reliability growth that follows a reliability

decline is usually accepted (Shatnawi, 2016).

Fig. 5.11 Laplace test data trend

The parameter estimation and the goodness-of-fit metrics in terms of MSE, AIC,

Bias, Variation and RMSPE of the testing-effort functions under comparison are

tabulated in Table 5.3.1. According to Table 5.3.1, we can see that the Weibull

function has lower MSE, AIC, bias, variation, and RMSPE metric values among

the testing-effort functions under comparison. Therefore, the comparison criteria

favour the Weibull function and, hence, adopted for further evaluation. It is worth

mentioning that the exponential function fails to give any plausible estimation

results.

www.manaraa.com

48

Table 5.15 Parameter estimation and comparison criteria metrics results

Testing-Effort

Functions

Under Comparison

Parameter

Estimation

Comparison Criteria

D C r MSE AIC Bias
Variatio

n

RMSP

E

Exponential * * — * * * * *

Rayleigh
2873 .00173 — 663.99

294.8
-

1.461 26.102 26.143

Weibull
2670 .00077 2.07 633.23

285.0

-

2.037 25.448 25.529

Logistic
2067 .161 38.64 2179.8

372.2

-

5.033 47.094 47.362

 * the function fails to give any plausible result
 — the component is not part of the corresponding function

The fitting of the testing-effort functions under comparison to the actual non-

cumulative and cumulative testing-effort are graphically illustrated in Figures 5.12

,5.13 respectively. From Figure 5.13, we can observe that the Weibull testing-

effort function provides overall a better fit than the other functions under

comparison. Therefore, the Weibull function provides more accurate description

of resource consumption than other functions.

www.manaraa.com

49

Fig. 5.12 Non-cumulative testing-effort curves

Fig. 5.13 Cumulative testing-effort curves

0

500

1000

1500

2000

0 7 14 21 28 35

C
u

m
u

la
ti

v
e

T
es

ti
n

g
-E

ff
o
rt

(C
P

U
 t

im
e)

Testing Time (month)

Actual Data

Estimated Values by Rayleigh Function

Estimated Values by Weibull Function

Estimated Values by Logistic Function

www.manaraa.com

50

The resultant parameter estimation tabulated in Table 5.3.16. According to the

estimated values in Table 5.16, the probability of perfect-debugging or

debugging-efficiency ‘p’ of the faults encountered in the re-used components is

“certain” while that was not the case for the newly developed components.

According to the estimated values in Table 5.16, the error introduction or

generated rate ‘α’ per detected fault in the newly developed components is higher

than that in the re-sued components.

It is estimated that a total of 1356 faults were detected in the 35 months including

45 faults were generated, and out of them, only 1297 were perfectly debugged

and corrected in the same debugging period as shown in Table 5.17. Besides,

our proposed modelling approach in Table 5.18 reveals the number of faults

detected and how many of them were corrected for each type respectively.

Tables 5.19 and 5.20, reveal very important results that can be of immense-help

to the software developer and decision maker such as the initial fault-content,

amount of testing-effort expenditure, total number of fault-content included the

introduced errors due to imperfect-debugging environment, number of fault

introduced, and number fault corrected for each of these modules.

www.manaraa.com

51

Table 5.16 Parameter estimation

Model

Parameter Proportion Parameter

A b1,2 p1,2 α1,2 b3,4 p3,4 α3,4 h1 h3 g1 g3

Proposed 1311.32 .074 1 .001 .009 .833 .042 .167 .101 .197 .255

Table 5.17 Plausible Results

Ground Based Radar Software System

Initial

Fault-Content

𝒂

Effort

Consumed

𝑾𝒕

Total

Fault-Content

𝒂𝑾𝒕
**

Fault

Introduced

𝒂𝑾𝒕
− 𝒂

Fault

Corrected

𝒎𝑾𝒕

Estimated 1311.32 1873.65 1356.21 44.99 1297.34

Reported* 1301 1846.92 — — —

 * refers to software reliability data (DS-III) in the Appendix

 — the component is not given in DS-II

 **𝑎𝑊𝑡
= 𝑎 + 𝛼 ∙ 𝑚𝑊𝑡

 given in (Kapur et al., 2009, 2011)

 Table 5.18 Fault Type Content Results

Model

Ground Based Radar Software System

Easy Faults Medium Faults Hard Faults

Detected 262.50 956.18 137.54

Corrected 233.94 942.08 121.33

www.manaraa.com

52

Table 5.19 Calculated Results for Re-used Components

Table 5.20 Calculated Results for Newly-Developed Components

The fitting of the proposed model to the actual non-cumulative and cumulative

software reliability data are graphically illustrated in Figures 5.14 ,5.15

respectively. From Figure 5.15, we can observe that the estimated values are

very close to the actual software reliability data and therefore fits the data

excellently well.

Re-used Components

component 1 component 2

𝒂 𝑾𝒕 𝒂𝑾𝒕 𝒂𝑾𝒕
− 𝒂 𝒎𝑾𝒕 𝒂 𝑾𝒕 𝒂𝑾𝒕 𝒂𝑾𝒕

− 𝒂 𝒎𝑾𝒕

218.99 369.11 219.21 0.219 219.21 43.27 5.62 43.29 0.015 14.74

Newly-Developed Components

component 3 component 4

𝒂 𝑾𝒕 𝒂𝑾𝒕 𝒂𝑾𝒕
− 𝒂 𝒎𝑾𝒕 𝒂 𝑾𝒕 𝒂𝑾𝒕 𝒂𝑾𝒕

− 𝒂 𝒎𝑾𝒕

916.61 1021.14 956.18 39.57 942.08 132.44 477.78 137.54 5.096 121.33

www.manaraa.com

53

 Fig. 5.14 Non-cumulative reliability data curves

 Fig. 5.15 Cumulative reliability data curves

www.manaraa.com

54

The resultant goodness-of-fit metrics of the proposed model compared with other

existing models are given in Table 5.21. As given in Table 5.21, the values of

MSE, bias, variation and RMSPE for the proposed model are the lowest.

Since lower values are better, the comparsion criteria favour the proposed

modeling approach.

Table 5.21 Comparison criteria metric results

Models under

Comparison

Comparison Criteria

MSE AIC Bias Variation RMSPE

Yamada et al. (2000) 3095.19 — 8.262 3379.89 3379.91

Kapur et al. (2009a) 82.21 — 0.695 659.64 659.64

Kapur et al. (2009a) 137.95 — 0.457 1846.45 1846.45

Proposed 80.87 256.21 0.066 9.1239 9.1241

 — the metric is not measured by the corresponding model

www.manaraa.com

55

Chapter 6

Concluding Remarks and Future Work

The importance of modelling and analysis of software debugging-process or

fault-correction phenomena in a distributed development environment has been

well recognized and many studies have addressed this problem. The aim of most

of these endeavors has been to develop analytical models for the fault correction

phenomena in order to compute quantities of interest such as the number of faults

corrected, effort consumption, number of faults introduced due to imperfect-

debugging activities, number of remaining faults and the software reliability

function.

In this thesis, we have explored the importance of testing-resource and

imperfect-debugging phenomenon, through an integrated component-based

modelling approach for distributed development environment. Therefore, this

attempt, could be of immense-help to the developer in controlling and monitoring

the testing-process closely and effectively allocating the resources to reduce the

testing-cost and to meet the given reliability-requirements.

 Therefore, this study provides a new insight into the development of

software reliability modelling in distributed development environment. It has also

demonstrated the integration of a set of existing non-homogenous Poisson

process-based software-reliability-model. The resultant integrated component-

based modelling approach has been validated and compared with other existing

non-homogenous Poisson process based software reliability models by applying

www.manaraa.com

56

them on three software-reliability-data. The results were very plausible and yields

insightful interpretations for the resources expenditures during the testing and

debugging phase.

Today is a period of transition for neural network technology. As neural

network can be described in a mathematical form and they have a significant

advantage over analytical models, because they require only software reliability

data history as input and no assumptions. The extension of our integrated

component-based modelling approach to demonstrate the applicability of the

neural network approach to the modelling of software reliability in distributed

development environment, is an ongoing challenge that stimulates more future

research efforts.

www.manaraa.com

57

References

Ahmad, N. Khan, MG. Rafi, LS. A Study of Testing-Effort Dependent Inflection

S-shaped Software Reliability Growth Models with Imperfect

Debugging. International Journal of Quality & Reliability Management,

27(1), 2010, pp. 89-110.

ANSI/IEEE. Standard Glossary of Software Engineering Terminology. STD-

729-1991, ANSI/IEEE, 1991.

Boehm, B. and Basili, VR. Software Defect Reduction Top 10 List, Computer,

34(1), 2001, pp. 135–137.

Brooks, WD. and Motley, RW. Analysis of Discrete Software Reliability

Models. Technical Report (RADC-TR-80-84), Rome Air Development

Center: New York, 1980.

Chmiel, R. and Loui, MC. Debugging. SIGCSE Bulletin, 2004, 36(1), pp. 17-21.

Goel, AL. and Okumoto, K. Time Dependent Error Detection Rate Model for

Software Reliability and other Performance Measures. IEEE

Transactions on Reliability, 28(3), 1979, pp. 206-211.

Goswami, DN. Jha, PC. Johri, P. and Kapur, R. Software Reliability Growth

Model for Distributed Environment Incorporating two types of

Imperfect Debugging. Proceedings of 3rd International Conference on

Reliability and Safety Engineering, 2007, pp. 308-319.

Huang, CY. Kuo, SY. and Lyu, MR. An Assessment of Testing-Effort

Dependent Software Reliability Growth Models. IEEE Transactions on

Reliability, 56(2), 2007, pp. 198-211.

Idris, K. The PNZ Software Reliability Model Revisited, M.Sc. Thesis, Al al-

Bayt University, 2009 (unpublished).

IEEE Computer Society, IEEE Standard Glossary of Software Engineering

Terminology: IEEE Standard 610.12-1990.

Jones, C. Applied software measurement: Global Analysis of Productivity

and Quality, McGraw-Hill, 3rd edition, 2008.

www.manaraa.com

58

Kapur, PK. Johri P. and Singh Ompal. Modeling Software Reliability Growth

in Distributed Environment Using Unified Approach. In Proceedings of

the 3rd National Conference; INDIACom-2009 Computing For Nation

Development, February 26 – 27, 2009a.

Kapur, PK. Khatri, SK. Johri P. and Singh O. Incorporating Concept of Two

Types of Imperfect Debugging for Developing Flexible Software

Reliability Growth Model in Distributed Development Environment.

(JTES) Delving: Journal of Technology and Engineering Sciences, 1(1),

2009b, pp.9-19.

Kapur, PK. Goswami, DN. and Gupta, A. Software Reliability Growth Model

with Testing Effort Dependent Learning Function for Distributed

Systems. International Journal of Reliability, Quality and Safety

Engineering, 11(4), 2004, pp. 365–377.

Kapur, PK. Bardhan, AK. and Shatnawi, O. Why Software Reliability Growth

Modelling should Define Errors of Different Severity. Quality Control

and Applied Statistics, 49(6), 2004, pp. 699-702.

Kapur, PK. Shatnawi, O. Aggarwal, AG. and Kumar, R. Unified Framework for

Developing Testing Effort Dependent Software Reliability Growth

Models. WSEAS Transactions on Systems, 8(4), 2009, pp. 521-531.

Kapur, PK. Pham, H. Anand, S. and Yadav, K. A Unified Approach for

Developing Software Reliability Growth Models in the Presence of

Imperfect Debugging and Error Generation. IEEE Transactions on

Reliability, 60(1), 2011, pp. 331-340.

Kapur, PK. Pham, H. Gupta, A. and Jha, PC. Software Reliability Assessment

with OR Applications. Springer-Verlag, 2011.

Kanoun, K. Kaaniche, M. and Laprie, J-C. Qualitative and Quantitative

Reliability Assessment. IEEE Software, 14(2), 1997, pp. 77-87.

Khoshogoftaar, TM. and Woodcock, TG. Software Reliability Model Selection:

A Case Study. Proc. of the Int’l Symposium on Software Reliability

Engineering, 1991, pp. 183-191

www.manaraa.com

59

Kuo SY, Huan CY, Lyu MR. Framework for Modelling Software Reliability

using various Testing-Effort and Fault-Detection Rates. IEEE

Transactions on Reliability, 50(3), 2011, pp. 310-320.

Lavinia, A, Dobre, C, Pop, F, and Cristea, V. A Failure Detection System for

Large Scale Distributed Systems. International Journal of Distributed

Systems and Technologies, 2(3), 2011, pp. 64–87

Lim, WC. Effects of Reuse on Quality, Productivity and Economics. IEEE

Transactions on Software, 11(5), 1994, pp. 23–30.

Lin, C-T. Analyzing the Effect of Imperfect Debugging on Software Fault

Detection and Correction Processes via a Simulation Framework,

Mathematical and Computer Modelling, 54(11), 2011, pp. 3046–3064.

Lyu, MR. Software Reliability Engineering: A Roadmap, Future of Software

Engineering (FOSE’07), IEEE Computer Society, Washington, DC, USA,

2007, pp. 153–170.

Lyu, MR. Handbook of Software Reliability Engineering, McGraw-Hill, 1996.

Misra, PN. Software Reliability Analysis. IBM Systems Journal, 22(3), 1983,

pp.262–279.

Musa, JD. Software Reliability Engineering: More Reliable Software Faster and

Cheaper, 2nd Edition, AuthorHouse, 2004.

Musa, JD. Iannino, A. and Okumoto, K. Software Reliability: Measurement,

Prediction, Applications, McGraw-Hill, 1987.

Musa, JD. Software Reliability Engineering: More Reliable Faster and

Cheaper, 2nd edition, McGraw-Hill, 2004.

O’Dell DH. The debugging Mindset. ACM Queue. 2007, 15(1), pp. 1-20

Ohba, M. Software Reliability Analysis Models. IBM Journal of Research and

Development, 28(4), 1984, pp. 428–443.

Ohtera, H. and Yamada, S. Optimal Allocation and Control Problems for

Software-Testing Resource. IEEE Transactions on Reliability, 39(2),

1990, pp. 171-176.

www.manaraa.com

60

Pfleeger, SA. and Atlee, JM. Software Engineering: Theory and Practice. 3rd

edition, Prentice-Hall, 2006.

Shatnawi, O. Measuring Commercial Software Operational Reliability: an

Interdisciplinary Modelling Approach. Eksploatacja i Niezawodnoαα -

Maintenance and Reliability, 16(4), 2014, pp.585–594.

Peng, R. Li, YF. Zhang, WJ. Hu, QP. Testing Effort Dependent Software

Reliability Model for Imperfect Debugging Process considering both

Detection and Correction. Reliability Engineering and System Safety,

126, 2014, pp. 37–43

Pham, H. System Software Reliability. Springer, 2006.

Shatnawi, O. An Integrated Software Reliability Modelling Approach to

Imperfect Fault Debugging Activities, International Journal of Systems

Assurance Engineering and Management, (communicated, 2017).

Shatnawi, O. An Integrated Framework for Developing Discrete-Time

Modelling in Software Reliability Engineering, Quality and Reliability

Engineering International, 32(8), 2016, pp. 2925.2943.

Shatnawi, O. A Software Reliability Model for Distributed Systems. Al

Manarah Journal for Research and Studies, 13(6), 2007, pp. 201-214.

Shatnawi, O. Discrete Time NHPP Models for Software Reliability Growth

Phenomenon. International Arab Journal of Information Technology, 6(2),

2009, pp. 124-131.

Shatnawi, O. Testing-Effort Dependent Software Reliability Model for

Distributed Systems. International Journal of Distributed Systems and

Technologies, 4(2), 2013, pp. 1-14.

Tassey, G. The Economic Impacts of Inadequate Infrastructure for Software

Testing, Technical Report RTI Project Number 7007.011, National

Institute of Standards and Technology, Gaithersburg, MD, USA, 2002.

www.manaraa.com

61

Tamura, Y. Yamada, S. and Kimura, M. A Reliability Assessment Tool for

Distributed Software Development Environment based on Java and

J/Link. European Journal of Operational Research. 175(1), 2006, pp.

435–445.

Wang, Z. Tang, K. and Yao, X. Multi-objective Approaches to Optimal Testing

Resource Allocation in Modular Software Systems. IEEE Transactions

on Reliability, 59(3), 2010, 563–575.

Yamada, S. Ohba, M. and Osaki, S. S-shaped Reliability Growth Modelling for

Software Error Detection, IEEE Transactions on Reliability, 32(5), 1983,

pp. 475-478.

Yamada, S. Tokuno, K. and Osaki, S. Imperfect Debugging Models with Fault

Introduction Rate for Software Reliability Assessment, International

Journal of System Science, 23(12), 1992, pp.2253-2264.

Yamada, S. Software Reliability Modeling: Fundamentals and Applications.

Springer, 2014.(book)

Yamada, S. Ohtera, H. and Narihisa, H. Software Reliability Growth Models

with Testing-Effort. IEEE Transactions on Reliability, 35(1), 1985, pp.19-

23.

Yamada, S. Tamura, Y. and Kimura, M. A Software Reliability Growth Model for a

Distributed Development Environment. Electronics and Communications in

Japan-Part 3, 83(12), 2000, pp. 1–8.

Zhao, X. Wang, T. Liu, E. and Clapworthy, GJ. Web Services in Distributed

Information Systems: Availability, Performance and Composition.

International Journal of Distributed Systems and Technologies, 1(1), 2010,

pp. 1–16.

www.manaraa.com

62

www.manaraa.com

63

www.manaraa.com

64

Appendices

Appendix A

Dataset I: collected during 19 weeks of testing, 47.65 CPU hours were

consumed, and 328 software faults were corrected during debugging

(Ohba, 1984).

Test time
(month)

Execution time
(CPU hour)

Detected
faults

Cumulative
execution time

(CPU hour)

Cumulative
detected

faults

1 2.45 15 2.45 15

2 2.45 29 4.9 44

3 1.96 22 6.86 66

4 0.98 37 7.84 103

5 1.68 2 9.52 105

6 3.37 5 12.89 110

7 4.21 36 17.1 146

8 3.37 29 20.47 175

9 0.96 4 21.43 179

10 1.92 27 23.35 206

11 2.88 27 26.23 233

12 1.44 22 27.67 255

13 3.26 21 30.93 276

14 3.84 22 34.77 298

15 3.84 6 38.61 304

16 2.3 7 40.91 311

17 1.76 9 42.67 320

18 1.99 5 44.66 325

19 2.99 3 47.65 328

www.manaraa.com

65

Appendix B

Dataset II: collected during 38 weeks of testing, 2456.4 CPU hours were

consumed, and 231 software faults were detected during debugging

(Misra, 1983).

Test time
(month)

Execution time
(CPU hour)

Detected
faults

Cumulative
execution time

(CPU hour)

Cumulative
detected

faults

1 62.5 15 62.5 15

2 44 6 106.5 21

3 40 8 146.5 29

4 68 8 214.5 37

5 62 8 276.5 45

6 66 4 342.5 49

7 73 4 415.5 53

8 73.5 8 489 61

9 92 6 581 67

10 71.4 2 652.4 69

11 64.5 7 716.9 76

12 64.7 8 781.6 84

13 36 3 817.6 87

14 54 5 871.6 92

15 39 5 910.6 97

16 68 8 978.6 105

17 61 8 1039.6 113

18 62.6 6 1102.2 119

19 98.7 12 1200.9 131

20 25 5 1225.9 136

21 12 2 1237.9 138

22 55 5 1292.9 143

23 49 6 1341.9 149

24 64 9 1405.9 158

25 26 1 1431.9 159

26 66 4 1497.9 163

27 49 2 1546.9 165

28 52 4 1598.9 169

29 70 4 1668.9 173

30 84.5 9 1753.4 182

31 83 6 1836.4 188

32 60 1 1896.4 189

33 72.5 3 1968.9 192

34 90 6 2058.9 198

35 58 6 2116.9 204

www.manaraa.com

66

36 60 3 2176.9 207

37 168 14 2344.9 221

38 111.5 10 2456.4 231

www.manaraa.com

67

Appendix C

C – Dataset III: collected during 35 months of testing, 1846.92 CPU hours

were consumed, and 1301 software faults were detected during

debugging (Brooks and Motely, 1980).

Test time
(month)

Execution time
(CPU hour)

Detected
faults

Cumulative
execution time

(CPU hour)

Cumulative
detected

faults

1 7.25 7 7.25 7

2 3.17 22 10.42 29

3 7.08 32 17.5 61

4 7.33 47 24.83 108

5 7.25 26 32.08 134

6 12.58 25 44.66 159

7 19.92 16 64.58 175

8 52.5 48 117.08 223

 ض259 164.26 36 47.18 9

10 95.1 53 259.36 312

11 55.75 57 315.11 369

12 59.25 39 374.36 408

13 43.58 71 417.94 479

14 44.75 80 462.69 559

15 42.33 65 505.02 624

16 75 57 580.02 681

17 62.83 90 642.85 771

18 73.58 60 716.43 831

19 42.75 57 759.18 888

20 40.67 90 799.85 978

21 96.75 46 896.6 1024

22 88.58 57 985.18 1081

23 56.75 29 1041.93 1110

24 79.25 40 1121.18 1150

25 73.5 16 1194.68 1166

26 65.33 18 1260.01 1184

27 67.83 37 1327.84 1221

28 116.92 15 1444.76 1236

29 88.08 8 1532.84 1244

30 78.08 28 1610.92 1272

31 37.92 6 1648.84 1278

32 41.08 5 1689.92 1283

33 54.5 3 1744.42 1286

34 63 3 1807.42 1289

35 39.5 12 1846.92 1301

www.manaraa.com

68

