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Abstract 

 The present scenario of software development life-cycle has switched into 

a distributed environment because of the development of network technology and 

ever increased demand of sharing the resources to optimize the cost. In the 

software reliability engineering literature, few attempts have been made to model 

the fault testing and debugging process in a distributed development 

environment.  

As the area of software fault-debugging in distributed development 

environment is not thoroughly investigated in current literature, even though it is 

estimated to have been one of the most expensive endeavor in the industry. This 

objective dictates developing a novel testing-effort dependent software-reliability 

modelling approach for distributed-systems developed under imperfect-

debugging environment. Fault-debugging process and testing-effort expenditures 

are described by a non-homogenous Poisson process and testing-effort curve 

functions respectively. The resultant integrated modelling approach proves to be 

conducive for obtaining several models by following a single methodology and 

thus present a perspective investigation for studying of general models without 

making many assumptions.  

To the best of our knowledge this is the first time that this kind of integration 

modelling approach has been carried out for distributed systems that describes 

the relationship among the calendar time, the testing-effort consumption, and 

fault- correction/debugging process under imperfect-debugging environment. 

Actual software reliability data cited in literature have been employed to 

demonstrate the applicability of the proposed integrated modelling approach. The 

results are fairly encouraging and plausible when compared with well-

documented modeling-approach. 

Key-Words: software engineering, software testing, imperfect debugging, 

testing-effort, Laplace test.   
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Chapter 1 

Introduction and Overview 

Developing large-scale distributed software system is generally a quite 

complex and time consuming process. Due to their development complexity, 

these systems are hardly ever “perfect” (Lavinia et al., 2011). They are developed 

using the classical software engineering activities (Shatnawi, 2013). However, 

the nature and complexity of their requirements have drastically changed and 

users all over the world have become much more demanding in terms of cost, 

schedule and quality. Several techniques available for investigating the 

cost/schedule of software; however, reliability is most important attributes of 

software quality (Musa et al., 1987).  

1.1 Software Reliability 

Software is an integral part of any computer system. The level of cost, schedule, 

and quality are the very important characteristics of software products. Nowadays 

several techniques exist for investigating the cost and schedule of software; 

however, reliability is the most important attribute of quality to measure  software 

quality. The study of software reliability is important as it has direct affect the cost 

and time to delivery.  

Software Reliability should be defined as the probability of failure-free software-

operation for a specified-period of time in a specified-environment (ANSI/IEEE, 

1991).  

The objective of software testing and debugging phase in the software-

development-process is detecting and correcting faults, to make the software 

more reliable.   
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Software-reliability-models are utilized for assessing the degree of achievement 

of software-quality, deciding the time to software release for operational use, and 

evaluating the maintenance cost for faults undetected during the testing-phase 

(Yamada, 2014). 

Software reliability quantities have generally been defined with respect to time. 

There are three kinds of time:  

 the execution-time, the actual CPU time spent by the processor in 

executing the program,  

 the calendar-time, the familiar time we experience, and  

 the clock-time, the time from the beginning to the end of program 

execution.  

Experimentation has shown that models based on execution time are superior to 

those based on calendar-time or clock-time. 

 The aim of software quality/reliability measurement and assessment (Yamada, 

2014) is illustrated in Figure 1.1. 
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Fig. 1.1 Aim of software quality/reliability measurement 

 

Software reliability is generally accepted as the key factor in software quality since 

it quantifies software failures—the most unwanted event which makes software 

useless or even harmful to the whole system and malfunctioning software may 

kill people. As a result, it is regarded the most important factor contributing to 

customer satisfaction. In fact, ISO 9000-3 specifies field failures as the basic 

requirement for quality metrics (Lyu, 1996). Software reliability measures can be 

used for system engineering, project management during development, and 

software management during operational use, and evaluation of software 

engineering technologies (Musa et al., 1987). 
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1.2 Software Reliability Modelling Types 

Software reliability modelling has become one of the most important aspects in 

software reliability engineering. There are two main types of software reliability 

models: the deterministic and the probabilistic, more details can be found in 

(Kapur et al.; 2011; Pham, 2006). The deterministic model is used to study the 

number of distinct operands in a program as well as the number of errors and the 

number of machine instructions in the program. Performance measures of the 

deterministic type are obtained by analyzing the program texture and do not 

involve any random event. The probabilistic model represents the failure 

occurrences and the fault removals as probabilistic events.  

The Probabilistic Software Reliability Models can be classified into different 

groups:  

 Error Seeding Models  

 Failure Rate Models.  

 Curve Fitting Models.  

 Reliability Growth Models.  

 Markov Structure Models 

 Non-Homogeneous Poisson Process (NHPP) Models.  

1.3 Non-Homogeneous Poisson Process Models 

Stochastic processes are used for the description of a system’s operation over 

time. There are two main types of stochastic processes: continuous and discrete. 

Among discrete processes, counting processes in reliability engineering are 

widely used to describe the appearance of events in time (e.g., failures, number 

of perfect repairs, etc.). The simplest counting process is a Poisson process.  
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 The Poisson process plays a special role to many applications in reliability 

engineering.  

As a general class of well-developed stochastic process model in reliability 

engineering, non-homogeneous Poisson process models have been successfully 

used in studying hardware reliability problems. They are especially useful to 

describe software fault debugging-process or fault-correction phenomena which 

possess certain trends such as reliability-growth or deterioration. Therefore, an 

application of non-homogeneous Poisson process models to software reliability 

analysis is then easily implemented. Other important advantages of non-

homogeneous Poisson process models which should be stressed here are that 

non-homogeneous Poisson process models are closed under superposition and 

time transformation. We can easily incorporate two or more existing non-

homogeneous Poisson process models by summing up the corresponding mean 

value functions. It is worth mentioning that the  non-homogeneous Poisson 

process models are capable of coping with the case of non-homogenous testing 

and hence it is useful for a calendar time data as well as for the execution time 

data.  

The term ‘non-homogeneous’ implies that the characteristics of the probability 

distributions that describe the random variables representing the testing and 

debugging processes vary with time. This variation of failure intensity in time is to 

be expected since faults are being corrected and/or introduced in a program as 

time passes. Numerous non-homogeneous Poisson process based models have 

been formulated to assess software reliability (Kapur et al., 2011; Ahmad et al., 

2010; Shatnawi, 2014, 2016; Idris, 2009). 
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1.4 Testing-Effort Modelling 

Testing and debugging phase in the software-development-process aims at 

detecting and correcting faults, and hence making reliable software. The testing 

and debugging phase, which aims to improve the reliability of a software system, 

is the most costly, time-consuming phase among the four phases. About half of 

the resources consumed during the software development cycle are testing 

resources (Ohtera & Yamada, 1990; Shatnawi, 2013). Due to the increased size 

of the software, effective utilization of resource has become even more important 

than before (Wang et al., 2010). 

In reality, no software manager/developer is going to spend-infinite-resources on 

testing/debugging software. Testing resources include execution time, man 

power etc that affects reliability. The function that describes how testing 

resources are distributed is usually referred to as testing effort function and it has 

been incorporated into software reliability modelling (Peng et al., 2014).  

In software reliability literature, testing-effort curves (viz, as exponential, 

Rayleigh, Weibull, logistic etc) have been employed in the literature to 

measure testing resources (Yamada et al., 1985; Kuo et al., 2001; Huang et al., 

2007; Kapur et al., 2008; Shatnawi 2013). The exponential and Rayleigh can be 

modelled as, "the testing-effort consumption rate is proportional to the testing 

resources available" 

   
𝜕

𝜕𝑡
𝑊𝑡 = 𝑐(𝑡) ∙ (𝑑 −𝑊𝑡)                                                            (1.1)                                                     

Solving (1.1) under initial condition 𝑊𝑡=0 = 0, yields 

   𝑊𝑡 = 𝑑 ∙ (1 − exp(∫ 𝑐(𝑥) ∙ 𝑑𝑥
𝑡

0
))                                    (1.2) 
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Case 1: If 𝑐(𝑡) = 𝑐, the testing-effort expenditures follows an exponential curve: 

   𝑊𝑡 = 𝑑 ∙ (1 − exp(−𝑐 ∙ 𝑡))                                               (1.3) 

Case 2: If 𝑐(𝑡) = 𝑐 ∙ 𝑡, the testing-effort expenditures follows a Rayleigh type 

curve:          𝑊𝑡 = 𝑑 ∙ (1 − exp(−𝑐∙𝑡2

2
))                                                 (1.4)                                          

Case 3: If 𝑐(𝑡) = 𝑐 ∙ 𝑟 ∙ 𝑡𝑟−1, the testing-effort expenditures follows a Weibull 

function: 

𝑊𝑡 = 𝑑 ∙ (1 − exp(−𝑐 ∙ 𝑡𝑟))                                             (1.5) 

Case 4: If 𝑐(𝑡) = 𝑐 ∙
𝑊𝑡

𝑑
, the testing-effort expenditures follows a logistic function:       

𝑊𝑡 =
𝑑

1+𝑟∙exp(−𝑐∙𝑡)
                                (1.6) 

It is worth mentioning that Rayleigh and exponential testing-effort consumption 

curves are a special cases of the Weibull testing-effort consumption curve. 

 

1.5 Challenges Facing Software Reliability 

As software is created by error-prone humans, and there is no way to 

prevent programmes from making mistakes. Faults can be introduced during the 

software development-lifecycle. Therefore, it is impossible to guarantee a failure-

free software system (Lyu, 2007). In software reliability engineering literature, 

fault-debugging is challenging, and least developed. Software fault-debugging 

process is the process of detecting, locating, and correcting faults in software 

(IEEE, 1990). Approximately 20% of all software faults take 80% of all the 

required effort to analyse, isolate and correct software faults (Boehm and Basili, 

2001). Software-failure is estimated to cost American industries USD 60 billion 

per year (Tassey, 2002). Jones state that imperfect-debugging phenomenon 
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 were discovered in most software-development-companies (Jones, 

2008). Reusability is a key direction to improving software development 

productivity and quality (Shatnawi, 2013; 2017).  Due to high demand on quality 

and productivity in social systems, measuring reliability of software systems in 

distributed development environment is major concern for software developers 

(Tamura et al., 2006). 

1.6 Thesis objective 

This study has attempted to develop an integrated modelling approach, so 

as to capture different reliability growth curves ranging from exponential to highly 

S-shaped and incorporates the effect of software fault- correction/debugging 

complexity with time-dependent variation in testing-effort consumption for 

distributed systems developed under imperfect-debugging environments. Such 

approach is very much suited also for object-oriented software development 

environment.  

1.7 Structure of the Thesis 

The following is a brief of the remaining Chapters: 
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Chapter 2 reviews some of the well-documented and established non-

homogenous Poisson process based software reliability model for 

software quality/reliability measurement and assessment in a 

distributed development environment.   

Chapter 3 proposes a newly developed quantitative technique for software 

quality/reliability measurement and assessment model.  

Chapter 4 defines  the technique that has been employed for parameter 

estimation and software reliability data analyses, and provides the 

comparison criteria used for validation/evaluation. 

Chapter 5 presents the applications of the proposed integrated modelling 

approach to actual software reliability data through data analyses 

and model comparisons. 

Chapter 6 concludes and identifies possible avenues for future research. 
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Chapter 2 

Software Reliability Modelling in Distributed Development 

 Environment: Literature Review 

Software reliability models are useful in measuring reliability for the quality 

control and testing process control of software development. Many models have 

been proposed by many researchers. A few models have actually been applied 

to several software management tools which aid the software quality or reliability 

measurement and testing–progress control in the testing phase.  

All models discussed in this Chapter are based on non-homogeneous Poisson 

process because they can be easily applied in actual software development. 

Therefore, they are very useful in describing testing and debugging processes.  

2.1 Software Reliability Modelling 

The non-homogenous Poisson process based models that explain the software 

reliability-growth-phenomenon or fault-debugging-process in distributed 

development environment can be of two categories: 

 Time-dependent behavior of fault-correction process. That is the 

number of software faults being corrected is proportional to the remaining 

faults.  

 Yamada et al. (2000) Model 

 Kapur et al. (2009a) Model 

 Kapur et al. (2009b) Model 

 Time-dependent variation in testing-effort consumption. That is, the 

number of faults being corrected by the current testing-effort expenditures 

at any time is proportional to the remaining number of faults.  



www.manaraa.com

 

11 

 

 Kapur et al. (2004) Model 

 Shatnawi (2013) Model 

Some of the general assumptions (apart from some special ones for specific 

models discussed) assumed in the models are as follows:  

 Fault-debugging-process follows non-homogenous Poisson process.  

 Software reliability growth phenomenon in the re-used components is 

uniform (i.e., follows an exponential growth curve) while in the newly-

developed component is not (i.e., follows an S-shaped growth curve). 

 Fault-correction phenomena for re-used and newly-developed 

components has been modelled individually and is summed up to get the 

total fault-correction phenomenon of the software system. 

The following are some of non-homogeneous Poisson process based software-

reliability-models were  proposed for distributed development environment. 

2.1.1 Yamada et al. (2000) Model 

This model was a pioneering attempt in the field of software reliability modeling 

and paved the way for measuring reliability in distributed development 

environment. The model incorporates the exponential software reliability growth 

model (Goel and Okumoto, 1979) and the delayed S-shaped software reliability 

growth model (Yamada et al., 1983). 
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2.1.2 Kapur et al. (2004) Model 

The model describes the reliability-growth-phenomenon with respect to the 

testing-effort consumptions. The author incorporates a time-dependent fault 

removal rate in the newly developed software sub-system with respect to testing-

effort. This can account for learning which increases with testing and debugging 

time.  

2.1.3 Kapur et al. (2009a) Model 

The unified framework describes the fault-correction process using unified 

modelling approach. Using this generalized approach, a wide range of models 

(existing as well as new) can be developed for different design environment. 

2.1.4 Kapur et al. (2009b) Model 

The model describes the software reliability growth phenomenon considering two 

types of imperfect-debugging-process. The first type of imperfect-debugging is 

where all detected errors are not removed completely resulting in the same fault 

content of the software. The second type, known as error-generation, describes 

the situation when each error removal attempt increases the fault content of the 

software. For newly developed component, it is assumed that removal process 

follows logistic growth curve due to the fact that learning of removal team grows 

as testing progresses. 

2.1.5  Shatnawi (2013) Model 

The model integrates testing-effort function into Yamada et al. (2000) model to 

get a better description of the software fault-correction process. To relax the pre-

specified fault-content-weight or testing-weight parameters for each software  
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component that has been adopted in the aforementioned models. The author 

assumed that the ratio of fault-density and the amount of testing-effort 

expenditure in re-used to newly-developed modules is about 1 to 4, as reported 

“the defect rate for reused code is 0.9 defects per kilo line of code (KLOC), while 

the rate for newly developed software is 4.1 defects per KLOC in a study 

conducted at Hewlett-Packard (HP)” (Lim, 1994; Shatnawi, 2013).  

2.2 Study Motivation 

The aforementioned software reliability models are constructed considering 

the debugging scenarios as tabulated in Table 2.2.1. However, none of them 

provide insightful interpretations for both the testing-effort expenditure and 

imperfect-debugging phenomena during testing and debugging phase. A 

proposed solution is developing an integrated modelling approach.  

Therefore, this study has attempted to develop an integrated modelling 

approach, so as to capture different reliability growth curves ranging from 

exponential to highly S-shaped and incorporates the effect of software fault- 

correction/debugging complexity with time-dependent variation in testing-effort 

consumption for distributed systems developed under imperfect-debugging 

environments. Such in approach is very much suited also for object-oriented 

software development environment. Because object-oriented based on client-

server idea, therefor it is a distributed environment. 
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Table 2.1 Models under comparison 

Modelling 

Approach 

NHPP Calendar-

Time 

Testing-Effort 

(CPU time) 

Imperfect-

Debugging 

Yamada et al. (2000) √ √   

Kapur et al. (2004) √ √ √  

Kapur et al. (2009a) √ √   

Kapur et al. (2009b) √ √  √ 

Shatnawi (2013) √ √ √  

Proposed  √ √ √ √ 

 

To the best of our knowledge this is the first time that this kind of non-

homogenous Poisson process based integration modelling approach that 

describes the relationship among the calendar time, the testing-effort 

consumption, and fault- correction/debugging process under imperfect-

debugging environment, has been studied for distributed systems.  

2-3 Study Methodology  

• Step 1- Study software reliability data: The models require that 

software reliability data be available. The first step in developing a model is to 

carefully study such data in order to gain an insight into the nature of the process 

being modeled. It is highly desirable to plot the data as a function of, say, calendar 

time, execution time, or number of test cases executed. The objective of such 

plots is to try to determine the appropriate variables to use in the model. 

Sometimes it is desirable to model several such combinations and then use the  
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• fitted models for answering a variety of questions about the failure 

process. Occasionally, it may be necessary to normalize the data to, for example, 

account for changes in system size during testing.  

• Step 2- Formulate a Reliability Model: The next step is to construct 

an appropriate model based upon an understanding of the software technology, 

testing process, and development environment. The data and plots from Step 1 

are likely to be very helpful in this process.  

• Step 3- Obtain Estimates of Model Parameters: Different methods 

are generally required depending upon the nature of available data. The most 

commonly used one is the method of maximum likelihood because it has very 

good statistical properties. However, sometimes, the method of least squares or 

some other method may be preferred.  

• Step 4- Obtain the Fitted Model: The fitted model is obtained by 

substituting the estimated values of the parameters in the developed model. At 

this stage, we have a fitted model based on the available failure data.  

• Step 5- Perform Goodness-of-Fit Test: Before proceeding further, it 

is advisable to conduct suitable goodness-of-fit test to check the model fit. If the 

model fits, i.e., if it is a satisfactory descriptor of the observed failure process, we 

can move ahead. However, if the model does not fit, we have to collect additional 

data or seek a better, more appropriate model. There is no easy answer to either 

how much data to collect or how to look for a better model. Decisions on these 

issues are very much problem dependent and require a clear understanding of 

the models and the software development environment.  
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• Step 6- Obtain Estimates of Performance Measures: At this stage, 

we can compute various quantitative measures to assess the performance of the 

software system.  

• Step 7- Decision Making: The ultimate objective of developing a 

model is to use it for making some decisions about the software system, e.g., 

whether to release the system or continue testing. Such decisions are made at 

this stage of the modeling process based on the information developed in the 

previous steps. 
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Chapter 3 

Testing-Effort Dependent Software Reliability Modelling for 

Distributed Systems in Imperfect-Debugging Environment: 

A Proposed Integrated Approach 

Distributed systems are being developed using the classical software engineering 

activities (Shatnawi, 2013). Debugging is one of the most challenging, and least 

developed areas of software engineering. Software developers spend about 35-

50 percent of their time debugging software. The cost of debugging and testing 

is estimated for 50-75 percent of the total budget of software development 

projects, amounting to more than $100 billion annually (Chmiel and Loui, 2004; 

O’Dell, 2007). Software development still at nascent stage and has a long way to 

go for confirm success of projects. Therefore, it is impossible to guarantee a 

failure-free software system (Lyu, 2007) and absent of imperfect-debugging 

phenomenon in almost every project (Jones, 2008). 

The software debugging-process aims at detecting and correcting faults in 

order to improve the software reliability, which can be modelled by a 

mathematical relationship called a software reliability model. As already stated in 

Chapter 1 these models are used to measure software reliability and can plot the 

reliability the trends that are used to forecast the number of fault-corrected as a 

function of time. Execution time based models are superior to those based on 

calendar-time or clock-time (Musa et al., 1987). These models show how 

software reliability improves as the faults are detected and corrected. The testing 

and debugging activities in perfect and imperfect-debugging environments (Lin, 

2011) are depicted in Figure 3.1 and 3.2 respectively.  
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Fig. 3.1 Testing and perfect-debugging activities 

 

Fig. 3.2 Testing and imperfect-debugging activities 

The main objective of this study is to construct/develop a software reliability model 

based on more realistic assumptions depicting different phenomena during the 

testing and debugging phase in a distributed development environment 

 The first step in achieving this objective is to identify the unrealistic 

assumptions which existing models are based on. 

 The second step is to build flexible model which relax these assumptions.  

The following are some of unrealistic assumptions 

1. All faults are of the same type, complexity and have the same impact on 

the reliability growth.   

2. Testing-effort employed to detect, locate and correct the faults has the 

same consumption pattern.  

3. Pre-specified testing-weight parameters for each software component. 
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To address these unrealistic issues, a newly developed software reliability model 

for distributed system, through an integrated modelling approach incorporating 

fault-debugging complexity with time-dependent variation in testing-effort 

consumption under imperfect-debugging environment is proposed.  

3.1 Assumption and Notations 

The following are the assumptions adopted for formulation of the proposed 

integrated modelling approach: 

1. Testing resource is not constantly allocated during software testing phase, 

which can largely influence the debugging-process. 

2. The debugging-process consists of three stages namely, fault-detection, 

fault-location and fault-correction. That is, each time a failure is reported, 

an immediate or delayed-effort takes place to correct it. Accordingly, the 

faults are classified into three types: easy, medium, and hard, according to 

their debugging-correction complexity.  

3. The ratio of fault density and the amount of testing-effort expenditure in 

reused to newly developed components is about 1 to 4 (Lim, 1994; 

Shatnawi, 2013). 

4. The debugging-team may not be able to correct the fault and the fault may 

remain or get replaced. While the first phenomenon is known as imperfect-

debugging, the second is called error-generation. 

5. Newly developed component contains “medium & hard “ types of faults, 

while reused component contains only “easy “type of fault “. 
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The following notations are used for the mathematical formulation purpose: 

𝑚𝑤𝑡
 Expected number of faults debugged in time-dependent variation in 

testing-effort consumption (0,𝑊𝑡] 

𝑖, 𝑗    Subscripts that denotes the re-used and newly-developed components 

𝑚𝑖     Expected number of faults debugged in re-used modules 

𝑚𝑗     Expected number of faults debugged in newly-developed modules 

𝑊𝑡    Amount of testing-effort consumed in the time interval (0, 𝑡] 

𝑊𝑖,𝑗 Expected effort spent on modules debugging 𝑊𝑖 = 𝑊𝑡 ∙ 𝑔𝑖; 𝑊𝑗 = 𝑊𝑡 ∙ 𝑔𝑗     

𝑤𝑖,𝑗 Current effort spent on modules debugging, that is, 𝑊𝑡 = ∫𝑤𝑥 ∙ 𝑑𝑥    

𝑔𝑖,𝑗  Proportion of effort spent on modules debugging 0 ≤ 𝑔𝑖(𝑔𝑗) ≤

0.2(0.8);∑𝑔𝑖,𝑗 = 1     

𝑎    Total number of faults lying dormant in software ∑𝑎𝑖,𝑗 = 𝑎 

𝑎𝑖    Initial fault-content in re-used modules 𝑎𝑖 = 𝑎ℎ𝑖 

𝑎𝑗   Initial fault-content in newly developed modules 𝑎𝑗 = 𝑎ℎ𝑗 

ℎ𝑖,𝑗  Proportion of fault-content in modules 0 ≤ ℎ𝑖(ℎ𝑗) ≤ 0.2(0.8);∑ ℎ𝑖,𝑗 = 1     

𝑝    Probability of fault removal on a detection of a fault     

𝛼    Rate at which faults may be introduced during the debugging-process 

𝑐𝑡 Time dependent rate at which testing resources are consumed, with 

respect to remaining available resources 

𝑎, 𝑐, 𝑟 Constant parameter in testing-effort functions 
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3.2 Formulation 
 

Modelling the Imperfect Fault-Debugging-Process of ‘i’ Reused 

Components. To model the fault correction process of ‘i’ re-used components, 

the imperfect-debugging-model with testing-effort (Kapur et al., 2011; 2009) is 

selected. The selected model assumed that faults are of type ‘easy to debug, and 

their debugging-process is modeled as one-stage process. That is, once the 

failure is reported that fault that caused it, is corrected immediately without delay 

as illustrated in Figure 3.3. The model is given as 

 

𝑚𝑤𝑡𝑖
=

𝑎𝑖

1−𝛼𝑖
∙ (1 − 𝑒−𝑝𝑖∙𝑏𝑖∙

(1−𝛼𝑖)∙𝑤𝑡𝑖)                   (3.1) 

The above mean-value-function in ( .3 1) represents the expected number of faults 

corrected. 

 

 

Fig. 3.3 Fault-debugging-process for ‘easy to debug’ type 
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Modelling the Imperfect Fault-Debugging-Process of ‘j’ Newly Developed 

Components. To model the fault correction process of ‘j’ newly developed 

components, the imperfect-debugging-model with testing-effort (Kapur et al., 

2011; 2009) is adopted for the purpose. The adopted model assumed that faults 

are of two types: ‘medium to debug and ‘hard to debug’, and their debugging-

process is modeled as two-stage process and three-stage process receptively. 

That is, once the failure is reported that fault that caused it, is corrected with 

different time-delay.  

For ‘medium to debug’ faults, the imperfect debugging-process is modeled as a 

two-stage process—fault detection followed by correction as illust 

rated in Figure 3.4. The mean-value-function for components containing ‘medium 

to debug faults is given as 

𝑚𝑤𝑡𝑗
=

𝑎𝑗

1−𝛼𝑗
∙ (1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗

) ∙ 𝑒
−𝑏𝑗∙𝑤𝑡𝑗)

𝑝𝑗∙(1−𝛼𝑗)

)     (3.2) 

 

 

Fig. 3.4 Fault-debugging-process for ‘medium to debug’ type 

 

For ‘hard to debug’ faults, the imperfect-debugging-process is modeled as a 

three-stage process—fault detection, isolation followed by correction as 

illustrated in Figure 3.5. The mean-value-function for components containing 

‘hard to debug faults is given as  
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𝑚𝑤𝑡𝑗
=

𝑎𝑗

1−𝛼𝑗
∙ (1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗

+ 𝑏𝑗
2
∙
𝑤𝑡𝑗

2

2
) ∙ 𝑒

−𝑏𝑗∙𝑤𝑡𝑗)

𝑝𝑗∙(1−𝛼𝑗)

)                  

(3.3) 

 

 

Fig. 3.5 Fault-debugging-process for ‘hard to debug’ type 

The total imperfect-debugging of ‘j’ newly developed components is the 

superposition of the sum of the two debugging-process with mean-value-

functions given in (3.2) and (3.3) respectively, as 

 

 

𝑚𝑤𝑡𝑗
= 

𝑎𝑗

1−𝛼𝑗
∙ (1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗) ∙ 𝑒

−𝑏𝑗∙𝑤𝑡𝑗)
𝑝𝑗∙(1−𝛼𝑗)

)+ 

 

 
𝑎𝑗

1−𝛼𝑗
∙ (1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗 + 𝑏𝑗

2 ∙
𝑤𝑡𝑗

2

2
) ∙ 𝑒

−𝑏𝑗∙𝑤𝑡𝑗)

𝑝𝑗∙(1−𝛼𝑗)

)                              .  (3.4) 
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3.3 Modelling the Total Imperfect Fault-

Debugging-Process 
 

The proposed modelling approach for software developed in distributed 

environment is the superposition of the sum of the total debugging-process of ‘i’ 

reused and ‘j’ newly developed components with mean-value-function given in 

(3.1) and (3.4) respectively, as 

𝑚𝑤𝑡
=    ∑ 𝑚𝑤𝑡𝑖

𝑛
𝑖=1 + ∑ 𝑚𝑤𝑡𝑗

𝑚
𝑗=𝑛+1   

𝑚𝑡 = ∑
𝑎𝑖

1−𝛼𝑖
∙ (1 − 𝑒−𝑝𝑖∙𝑏𝑖∙(1−𝛼𝑖)∙𝑤𝑡𝑖)𝑛

𝑖=1  + 

 

∑
𝑎𝑖

1−𝛼𝑖
∙ ((1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗) ∙ 𝑒

−𝑏𝑗∙𝑤𝑡𝑗)
𝑝𝑗∙(1−𝛼𝑗)

)𝑚
𝑗=𝑛+1  

+  

 

(1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗 + 𝑏𝑗
2 ∙

𝑤𝑡𝑗
2

2
) ∙

𝑒
−𝑏𝑗∙𝑤𝑡𝑗)

𝑝𝑗∙(1−𝛼𝑗)

))                  (3.5) 

 

This proposed modelling approach given above in (3.5) is very interesting from 

various points of view. Besides its interpretation, it has the models (Goel and 

Okumoto, 1979; Yamada et al., 1992; Kapur et al. 1999; Yamada et al., 2000; 

Kapur et al. 2011; Shatnawi, 2013) as special cases. Thus, highlight it is flexibility 

and applicability.   
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Chapter 4 

Model Validation and Comparison Criteria 

 

 

To check the validity of the models under comparisons including the 

proposed modeling approach given previously in chapter (3) to describe 

reliability-growth, it has been tested on three software reliability datasets obtained 

from actual software-development-project. The first data-set was collected during 

19 weeks of testing, 328 faults were detected (Ohba, 1984). The second data-

set was collected during 38 weeks of testing, 231 faults were detected (Misra, 

1983). The fourth data-set was collected during 35 months of testing, 1301 faults 

were detected (Brooks and Motely, 1980). These data-set were deliberately 

chosen from different testing environments where the growth curves range from 

exponential to highly S-shaped (for more details refer to Appendix).  

For model validation and evaluation, we consider a simple case in which 

the software system composed of two re-used components and two newly-

developed 

 

 

 

  

𝑚𝑤𝑡
=    ∑ 𝑚𝑤𝑡𝑖

2
𝑖=1 + ∑ 𝑚𝑤𝑡𝑗

4
𝑗=3   

𝑚𝑡 = ∑
𝑎𝑖

1−𝛼𝑖
∙ (1 − 𝑒−𝑝𝑖∙𝑏𝑖∙

(1−𝛼𝑖)∙𝑤𝑡𝑖)2
𝑖=1  + 

 

∑
𝑎𝑗

1−𝛼𝑗
∙ ((1 − ((1 + 𝑏𝑗 ∙ 𝑤𝑡𝑗

) ∙ 𝑒
−𝑏𝑗∙𝑤𝑡𝑗)

𝑝𝑗∙(1−𝛼𝑗)

)4
𝑗=3  +  
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where 

𝑎1 = 𝑎 ∙ ℎ1; 𝑎2 = 𝑎 ∙ ℎ2 = 𝑎 ∙ (. 2 − ℎ1); 𝑎3 = 𝑎 ∙ ℎ3; 𝑎4 = 𝑎 ∙ ℎ4 = 𝑎 ∙ (. 2 − ℎ3);   

∑ 𝑎𝑘 = 𝑎;𝑏1 = 𝑏2; 𝑏3 = 𝑏4;
4
𝑘=1   

𝑊𝑡(1) = 𝑊𝑡 ∙ 𝑔1; 𝑊𝑡(2) = 𝑊𝑡 ∙ 𝑔2 = 𝑊𝑡 ∙ (. 8 − 𝑔1); 

∑ 𝑊𝑡(𝑘) = 𝑊𝑡
4
𝑘=1   

4.1. Software Reliability Data Analysis Technique 

Prior to employing software reliability modelling approach to software 

reliability data it is important to check out whether the reliability data shows 

growing behaviour with time, If the data does not show growing behaviour with 

time, then software reliability modelling should not be applied for estimation 

reliability of the system Kanoun et al. (1997) and they used Laplace test for this 

purpose. Let  𝑛𝑖 represents the number of faults corrected in time  𝑖(𝑖 =

1,2,3, … , 𝑘), then Laplace factor can be obtained as 

    𝑢𝑘 =
∑ (𝑖−1)𝑘
𝑖=1 𝑛𝑖−

𝑘−1

2
∑ 𝑛𝑖
𝑘
𝑖=1

√𝑘2−1

2
∑ 𝑛𝑖
𝑘
𝑖=1

                                               (4.2) 

Negative values represent a reliability-growth, otherwise positive values suggest 

a reliability decline, and the range of values below positive 2 and above negative 

2 represents stablility. 

  

 

(1 − ((1 + 𝑏𝑗 ∙𝑤𝑡𝑗 + 𝑏𝑗
2
∙
𝑤𝑡𝑗

2

2
) ∙ 𝑒

−𝑏𝑗∙𝑤𝑡𝑗)

𝑝𝑗∙(1−𝛼𝑗)

))                   

(4.1) 
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4.2 Model Validation and Evaluation 

We evaluate the performance (i.e., goodness-of-fit) of the models under 

comparison using mean-square-fitting-error, Bias, Variation, and root-mean-

square-prediction-error metrics. The smaller the metric value the better (Kapur et 

al., 2011; Shatnawi, 2016).  

 The mean-square-fitting-error (MSE) or long-term predictions is defined 

by (Lyu, 1996) as          

 𝑀𝑆𝐸 =
1

𝑘
∑ (�̂�𝑡𝑖

− 𝑥𝑖)
2𝑘

𝑖=1                                                                    (4.3) 

where �̂�𝑡𝑖
 is the mean number of faults at time 𝑡𝑖 estimated by a model, 𝑥𝑖 is the 

expected number of faults corrected at time 𝑡𝑖, and  𝑘 is the number of 

observations. 

 The Akaike Information Criterion (AIC) is defined by Khoshogoftaar & 

Woodcock (1991) as 

  𝐴𝐼𝐶 = −2 × 𝑙𝑜𝑔(max𝑜𝑓𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) + 2 × 𝑁           (4.4) 

where N is the number of the parameters used in the model. 

 Bias. is given as, 

    𝐵𝑖𝑎𝑠 =
1

𝑘
∑ 𝑃𝐸𝑖
𝑘
𝑖=1                                                                                    (4.5) 

where                          𝑃𝐸𝑖 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑖 

 Variation is given as, 

       𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = √
1

𝑘−1
∑ (𝑃𝐸𝑖 − 𝐵𝑖𝑎𝑠)2𝑘
𝑖=1                                                (4.6) 
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 Root-Mean-Square-Prediction-Error (RMSPE) is a way of measuring how 

good a model is over the actual data. 

      𝑅𝑀𝑆𝑃𝐸 = √(𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛2)                                                     (4.7) 

 

Other than these metrics used in comparing models. (Musa et al., 1987) have 

suggested the following attributes for choosing a model: 

 Capability. The model should possess the ability to estimate with 

satisfactory accuracy metrics needed by the software managers, 

 Quality of Assumptions. The model assumptions should be plausible 

and must depict the testing environment, 

 Applicability. A model can be judged as the better one if it can be applied 

across software products of different sizes, structures, platforms and 

functionalities. 

 Simplicity. The data required for an ideal SRGM should be simple and 

inexpensive to collect. The parameters should not be estimation should not be 

too complex and is easy to understand and apply even for persons without 

extensive mathematical background. 

4.3 Parameter Estimation Techniques 

To carry out the estimation part of software modelling, we employ the 

statistical-package-for-social-sciences (SPSS) based on the nonlinear-

regression-technique.  
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Chapter 5 

Data Analyses and Model Comparisons 

 

For model validation and evaluation, we consider a simple case in which 

the software system composed of two reused software components and two 

newly developed. Three reliability data collected from actual software-

development-project, have been analyzed and employed to show the applicability 

of the proposed modeling-approach. As these reliability data-set were extensively 

studied (Yamada et al., 2000; Tamura et al., 2006; Kapur et al., 2009a; Kapur et 

al., 2009b; Shatnawi, 2013), direct comparison with the work of other can be 

made. In this study, we treat these reliability data-set as they were observed from 

the testing phase after confirmation of the integration of all software components. 

5.1 First-Software-Development-Project 

The first software reliability data had been obtained during 19 weeks of 

testing/debugging of PL/I application program test data of size 1,317,000 lines of 

code (LOC). Over the course of 19 weeks, 47.65 CPU hours were consumed, 

and 328 software faults were reported (for more details see Appendix A).  

Figure 5.1 traces the Laplace-trend-test. Prior to the 17th week, the trend test 

values indicate stable reliability. It is clearly seen reliability fluctuations for the 5th 

week and 6th week. However these fluctuations does not last for long time. 

Therefore, we should not pay attention to it. Stable reliability trend indicates that 

the corrective actions have no visible effect on reliability. 
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 In such situation the testing and debugging team must introduce new test sets. 

However, after the 16th week, the trend become-stable. In such situation the 

system is used less or the reason behind this may also be due to unrecorded 

faults. Therefore, the testing and debugging team must take particular care 

(Kanoun et al., 1997). 

 

 

 

Fig. 5.1 Laplace-test-data-trend 

 

The resultant parameter estimation and the goodness-of-fit metrics in terms of 

MSE, AIC, Bias, Variation, and RMSPE of the models under comparison are 

tabulated in Table 5.1. According  to Table 5.1, we can see that the logistic 

function has lower MSE, AIC, bias, variation, and RMSPE metric values among 

the testing-effort functions under comparison. Therefore, the comparison criteria 

favour the logistic testing-effort function and, hence, adopted for further 

evaluation. It is worth mentioning that the exponential function fails to give any 

plausible estimation results.  
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Table 5.1 Parameter estimation and comparison criteria metrics results 

Testing-Effort Functions 

Under Comparison 

Parameter Estimation Comparison Criteria 

D C r MSE AIC Bias Variation RMSPE 

Exponential * * — * * * * * 

Rayleigh 49.32 0.014 — 5.237 52.68 0.560 2.28 2.347 

Weibull 799.22 0.002 1.115 15.65 45.67 3.362 4.12 5.318 

Logistic 54.84 0.226 13.03 1.629 47.93 -0.062 1.310 1.311 

  *  the function fails to give any plausible result   
  —  the component is not part of the corresponding function 
 
 

 

The fitting of the testing-effort functions under comparison to the actual non-

cumulative and cumulative testing-effort are graphically illustrated in Figure 5.2, 

5.3 respectively. From the Figure 5.3, we can observe that the logistic testing-

effort function provides a better fit than the other functions under comparison. 

Therefore, the logistic testing-effort function provides more accurate description 

of resource consumption than other functions. 
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Fig. 5.2  Non-cumulative testing-effort curves   

 

 

 

 

  Fig. 5.3 Cumulative testing-effort curves          
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The resultant parameter estimation of the proposed modeling apparoch is 

tabulated in Table 5.2. According to the estimated values in Table 5.2, the 

probability of perfect-debugging ‘p’ of the faults encountered in the re-used 

components is lower than that encountered in the newly developed components. 

According to the estimated values in Table 5.2, the error introduction or generated 

rate ‘α’ the debugging-process doesn’t introduce any error for re-used 

components but it is not the case for newly developed components.  

It is calcualted that a total of 409 faults were detected in the 19 weeks including 

108 faults were generated, and out of them, only 333 were perfectly debugged 

and corrected in the same debugging-period as shown in Table 5.3. Besides, our 

proposed modelling approach in Table 5.4reveals the number of faults detected 

and how many of them were corrected for each type respectively.  

As the software system composed of four components two of them are re-used 

and the other two are newly developed. Tables 5.5 and 5.6, reveal very important 

results that can be of immense-help to the developer and decision maker such 

as the initial fault-content, amount of testing-effort expenditure, total number of 

fault-content included the introduced errors due to imperfect-debugging 

environment, number of fault introduced, and number fault corrected for each of 

these modules. 
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Table 5.2 Parameter estimation 

Model 

Parameter Proportion Parameter  

a b1,2 p1,2 α1,2 b3,4 p3,4 α3,4 h1 h3 g1 g3 

Proposed 300.64 .383 .501 0 .771 .988 .350 .200 .691 .142 .118 

 

 

Table 5.3 Plausible Results 

 

 

PL/I application program 

Initial  

Fault-Content 

𝒂 

Effort  

Consumed 

𝑾𝒕 

Total  

Fault-Content 

𝒂𝑾𝒕
** 

Fault  

Introduced  

𝒂𝑾𝒕
− 𝒂 

Fault  

Corrected  

𝒎𝑾𝒕
 

Estimated 300.64 46.55 408.81 108.17 333.37 

Reported* 328 47.65 — — — 

              *  refers to software reliability data (DS-I) in the Appendix       

                                               —  the component is not given in DS-I 
          **𝑎𝑊𝑡

= 𝑎 + 𝛼 ∙ 𝑚𝑊𝑡
 given in (Kapur et al., 2009, 2011) 

 

Table 5.4 Fault Type Content Results 

Model 

 

PL/I application program 

Easy  Faults Medium  Faults Hard Faults 

Detected 60.128 298.27 50.42 

Corrected 24.313 258.64 50.41 
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Table 5.5 Calculated Results for Re-used Components 

 

Table 5.6 Calculated Results for Newly-Developed Components 

 

The fitting of the proposed modeling approach to the actual non-cumulative and 

cumulative software reliability data are graphically illustrated in Figure 5.4, 5.5 

respectively. From Figure 5.5, we can observe that the estimated values ( 

cumulative number of  corrected  faults , as a result of our propsed model) are 

very close to the actual software reliability data and therefore fits the data 

excellently well.  

As faults are corrected, the fault-correction intensity which represents the fault-

correction rate per fault per testing-effort weeks tends to drop and reliability tends 

to increase. The changeability of this rate shown in Figure 5.4  may be attributed 

to the imperfect-debugging phenomenon or fault debugging complexity. 

Resulting in a step increase in fault-correction intensity and a step decrease in  

  

Re-used Components 

component 1 component 2 

𝒂 𝑾𝒕 𝒂𝑾𝒕  𝒂𝑾𝒕
− 𝒂 𝒎𝑾𝒕  𝒂 𝑾𝒕 𝒂𝑾𝒕  𝒂𝑾𝒕

− 𝒂 𝒎𝑾𝒕  

60.13 6.61 60.13 0 24.31 0 2.70 0 0 0 

Newly-Developed Components 

component 3 component 4 

𝒂 𝑾𝒕 𝒂𝑾𝒕  𝒂𝑾𝒕
− 𝒂 𝒎𝑾𝒕  𝒂 𝑾𝒕 𝒂𝑾𝒕  𝒂𝑾𝒕

− 𝒂 𝒎𝑾𝒕  

207.7 31.75 298.22 90.52 258.6 32.77 5.49 50.42 17.65 50.41 



www.manaraa.com

 

36 

 

reliability. Therefore, we have in Figure 5.4  a step increase or decrease in fault-

correction intensity. As fault-correction intensity is an alternative way of 

expressing reliability and software reliability is the inverse of fault-correction 

intensity. Therefore,  both Figures commonly called reliability growth curves. 

 

 

   

 

 

         Fig.  5.4  Non-cumulative reliability data curves 
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                Fig.  5.5  Cumulative reliability data curves   

 

The resultant goodness-of-fit metrics in terms of MSE, AIC, bias, variation and 

RMSPE of the proposed model compared with other existing models are given in 

Table 5.7. As given in Table 5.7, the overall values of MSE, bias, variance and 

RMSPE for the proposed model are the lowest. As results of comparison, we may 

conclude that the proposed modelling approach fits better than the other models 

under comparison for this actual software reliability data. 
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Table 5.7 Comparison criteria metric results 

Models under 

Comparison 

Comparison Criteria 

MSE AIC Bias Variation RMSPE 

Yamada et al. (2000) 124.94 209.67 -0.231 11.48 11.49 

Tamura et al. (2006) 351.72 140.15 — — — 

Goswami et al. (2007) 38263.9 — 174.89 8105.18 8107.06 

Kapur et al. (2009a) 41.70 — 0.448 112.41 112.42 

Kapur et al. (2009a) 48.00 — 0.329 77.16 77.16 

Kapur et al. (2009b) 35.72 — 0.07 37.69 37.69 

Shatnawi (2013) 92.51 241.15 -0.5362 9.866 9.881 

Proposed 78.12 232.16 -0.1796 9.079 9.081 

       ___  the metric is not measured by the corresponding model 

 

5.2 Second-Software-Development-Project 

The Second software reliability data had been obtained during 38 weeks of 

testing and debugging of space shuttle software system. Over the course of 38 

weeks, 2456.4 CPU hours were consumed, and 231 software faults were 

reported (for more details see Appendix B).  

Figure 5.8 traces the Laplace-trend-test. The values of the trend test are 

completely negative from beginning. There are fluctuations, but this fluctuation 

does not drastically affect the reliability and the reliability growing behaviour. 

Reliability growth may result from a period during which the system is 

underutilized; it may also be caused by unrecorded faults. Therefore, the testing 

and debugging team must take particular care (Shatnawi, 2016). 
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Fig. 5.6 Laplace test data trend 

 

The resultant parameter estimation and the goodness-of-fit metrics in terms of 

MSE, AIC, Bias, Variation and RMSPE of the testing-effort functions under 

comparison are tabulated in Table 5.9 According  to Table 5.9, we can see that 

the logistic function has lower MSE, AIC, bias, variation, and RMSPE metric 

values among the testing-effort functions under comparison. Therefore, the 

comparison criteria favour the logistic testing-effort function and, hence, adopted 

for further evaluation. It is worth mentioning that the exponential function fails to 

give any plausible estimation results. 
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Table 5.8 Parameter estimation and comparison criteria metrics results 

Testing-Effort 

Functions 

Under Comparison 

Parameter 

Estimation 

Comparison Criteria 

d c R MSE AIC Bias 
Variatio

n 

RMSP

E 

Exponential * * — * * * * * 

Rayleigh 2241 .0040 — 23666.8 1626.2 53.5 146.16 155.66 

Weibull 5063 .0084 1.1639 4225.18 654.3 10.4 65.026 65.85 

Logistic 2836 .0985 10.49 8982.06 1110.4 -8.2 95.69 96.04 

  *  the function fails to give any plausible result   
  —  the component is not part of the corresponding function 

 

The fitting of the testing-effort functions under comparison to the actual non-

cumulative and cumulative testing-effort are graphically illustrated in Figures 5.7 

,5.8 respectively. From Figure 5.8, we can observe that the Weibull testing-effort 

function provides overall a better fit than the other functions under comparison. 

Therefore, the Weibull function provides more accurate description of resource 

consumption than other functions. 
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Fig. 5.7  Non-cumulative testing-effort 

 

 

 

Fig. 5.8  Cumulative testing-effort curves 
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According to the estimated values in Table 5.9, the probability of perfect-

debugging or debugging-efficiency ‘p’ of the faults encountered in the re-used 

components is higher than that encountered in the newly developed components. 

According to the estimated values in Table 5.9, the error introduction or generated 

rate ‘α’ per detected fault in the re-used components is higher than that in the 

newly developed components.  

It is estimated that a total of 380 faults were detected in the 38 weeks months 

including 108 faults were generated, and out of them, only 218 were perfectly 

debugged and corrected in the same debugging period as shown in Table 5.10. 

Besides, our proposed modelling approach in Table 5.10,  reveals the number of 

faults detected and how many of them were corrected for each type respectively.  

 Tables 5.11 and 5.12, reveal very important results that can be of immense-help 

to the software developer and decision maker such as the initial fault-content, 

amount of testing-effort expenditure, total number of fault-content included the 

introduced errors due to imperfect-debugging environment, number of fault 

introduced, and number of fault corrected for each of these modules. 
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Table 5.9 Parameter estimation 

Model 

Parameter Proportion Parameter  

A b1,2 p1,2 α1,2 b3,4 p3,4 α3,4 h1 h3 g1 g3 

Proposed 355.39 .077 .815 .288 .011 .545 .009 .185 .659 .049 .027 

 

Table 5.10 Plausible Results 

 

 

Space Shuttle Software System 

Initial  

Fault-Content 

𝒂 

Effort  

Consumed 

𝑾𝒕 

Total  

Fault-Content 

𝒂𝑾𝒕
** 

Fault  

Introduced  

𝒂𝑾𝒕
− 𝒂 

Fault  

Corrected  

𝒎𝑾𝒕
 

Estimated 355.39 2226.57 380.48 25.08 217.56 

Reported* 231 2456.40 — — — 

         *  refers to software reliability data (DS-II) in the Appendix 
      —  the component is not given in DS-II 
    **𝑎𝑊𝑡

= 𝑎 + 𝛼 ∙ 𝑚𝑊𝑡
 given in (Kapur et al., 2009, 2011) 

 

Table 5.11 Fault Type Content Results 

Model 

 

Space Shuttle Software System 

Easy  Faults 
Medium  

Faults 
Hard Faults 

Detected 94.95 234.29 51.24 

Correcte

d 
82.88 125 

9.68 

Table 5.12 Calculated Results for Re-used Components 
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Table 5.13 Calculated Results for Newly-Developed Components 

 

The fitting of the proposed model to the actual non-cumulative and cumulative 

software reliability data are graphically illustrated in Figure 5.9 ,5.10  respectively. 

From Figure 5.10, we can observe that the estimated values are very close to the 

actual software reliability data and therefore fits the data excellently well.  

 The changeability of this rate shown in Figure 5.9  may be attributed to the 

imperfect-debugging phenomenon or fault debugging complexity. Resulting in a 

step increase in fault-correction intensity and a step decrease in reliability. 

Therefore, we have in Figure 5.9  a step increase or decrease in fault-correction 

intensity. As fault-correction intensity is an alternative way of expressing reliability 

and software reliability is the inverse of fault-correction intensity. Therefore,  both 

Figures commonly called reliability growth curves. 

  

Re-used Components 

component 1 component 2 

𝒂 𝑾𝒕 𝒂𝑾𝒕
 𝒂𝑾𝒕

− 𝒂 𝒎𝑾𝒕
 𝒂 𝑾𝒕 𝒂𝑾𝒕

 𝒂𝑾𝒕
− 𝒂 𝒎𝑾𝒕

 

65.75 336.2 72.79 7.04 58.42 5.33 109.1 22.16 19.04 24.46 

Newly-Developed Components 

component 3 component 4 

𝒂 𝑾𝒕 𝒂𝑾𝒕  𝒂𝑾𝒕
− 𝒂 𝒎𝑾𝒕  𝒂 𝑾𝒕 𝒂𝑾𝒕  𝒂𝑾𝒕

− 𝒂 𝒎𝑾𝒕  

234.2 1721 234.3 0.087 125 50.11 60.12 51.24 1.125 9.68 
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Fig.  5.9  Non-cumulative reliability data curves 

 

 

 

 

 

  

                      Fig.  5.10  Cumulative reliability data curves 
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The resultant goodness-of-fit metrics in terms of MSE, AIC, bias, variation and 

RMSPE of the proposed model compared with other existing models are given in 

Table 5.14. As given in Table 5.14, the values of MSE and AIC for the proposed 

model are the lowest. 

Since lower values are better, the comparsion criteria favour the proposed 

modeling approach. 

 As a results , we may conclude that the proposed modelling approach fits better 

than the other models under comparison for this actual software reliability data. 

Table 5.14 Comparison criteria metric results 

Models under 

Comparison 

Comparison Criteria 

MSE AIC Bias Variation RMSPE 

Yamada et al. (2000) 859.80 258.23 — — — 

Kapur et al. (2004) 663.34 215.72 — — — 

Proposed 40.65 203.16 4.838 4.208 6.413 

     —  the metric is not measured by the corresponding model 

5.3 Third Software Development Project 

The third software reliability data had been obtained during 35 months of testing 

and debugging of various stages of formal test and integration of a Defense, 

Ground Based Radar software system of size 124K LOC. During the period, 

1846.92 CPU hours were consumed, and 1301 software faults were reported (for 

more details see Appendix C). 

Figure 5.11 traces the Laplace trend test. Trend test indicates reliability decay, 

which is expected and considered normal at the start of a new activity. Since the 

decay has lasted for short period, it may neglect it. However, during the period 

from  the 7th month till 20th month, we have seen some fluctuations, but this 
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fluctuation has no effect on reliability’s growing behavior. After that the behavior 

reliability grew monotonically. Such reliability growth that follows a reliability 

decline is usually accepted (Shatnawi, 2016). 

 

 

Fig. 5.11 Laplace test data trend 

 

 

The  parameter estimation and the goodness-of-fit metrics in terms of MSE, AIC, 

Bias, Variation and RMSPE of the testing-effort functions under comparison are 

tabulated in Table 5.3.1. According  to Table 5.3.1, we can see that the Weibull  

function has lower MSE, AIC, bias, variation, and RMSPE metric values among 

the testing-effort functions under comparison. Therefore, the comparison criteria 

favour the Weibull  function and, hence, adopted for further evaluation. It is worth 

mentioning that the exponential function fails to give any plausible estimation 

results. 
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Table 5.15 Parameter estimation and comparison criteria metrics results 

Testing-Effort 

Functions 

Under Comparison 

Parameter 

Estimation 

Comparison Criteria 

D C r MSE AIC Bias 
Variatio

n 

RMSP

E 

Exponential * * — * * * * * 

Rayleigh 
2873 .00173 — 663.99 

294.8 
-

1.461 26.102 26.143 

Weibull 
2670 .00077 2.07 633.23 

285.0 

-

2.037 25.448 25.529 

Logistic 
2067 .161 38.64 2179.8 

372.2 

-

5.033 47.094 47.362 

  *  the function fails to give any plausible result   
  —  the component is not part of the corresponding function 

 

The fitting of the testing-effort functions under comparison to the actual non-

cumulative and cumulative testing-effort are graphically illustrated in Figures 5.12 

,5.13 respectively. From Figure 5.13,  we can observe that the Weibull testing-

effort function provides overall a better fit than the other functions under 

comparison. Therefore, the Weibull function provides more accurate description 

of resource consumption than other functions. 
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Fig. 5.12  Non-cumulative testing-effort curves 

 

 

Fig. 5.13  Cumulative testing-effort curves 
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The resultant parameter estimation tabulated in Table 5.3.16. According  to the 

estimated values in Table 5.16, the probability of perfect-debugging or 

debugging-efficiency ‘p’ of the faults encountered in the re-used components is 

“certain” while that was not the case for the newly developed components. 

According to the estimated values in Table 5.16, the error introduction or 

generated rate ‘α’ per detected fault in the newly developed components is higher 

than that in the re-sued components.  

It is estimated that a total of 1356 faults were detected in the 35 months including 

45 faults were generated, and out of them, only 1297 were perfectly debugged 

and corrected in the same debugging period as shown in Table 5.17. Besides, 

our proposed modelling approach in Table 5.18  reveals the number of faults 

detected and how many of them were corrected for each type respectively.  

Tables 5.19 and 5.20, reveal very important results that can be of immense-help 

to the software developer and decision maker such as the initial fault-content, 

amount of testing-effort expenditure, total number of fault-content included the 

introduced errors due to imperfect-debugging environment, number of fault 

introduced, and number fault corrected for each of these modules. 
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Table 5.16 Parameter estimation 

Model 

Parameter Proportion Parameter  

A b1,2 p1,2 α1,2 b3,4 p3,4 α3,4 h1 h3 g1 g3 

Proposed 1311.32 .074 1 .001 .009 .833 .042 .167 .101 .197 .255 

 

Table 5.17 Plausible Results 

 

Ground Based Radar Software System 

Initial  

Fault-Content 

𝒂 

Effort  

Consumed 

𝑾𝒕 

Total  

Fault-Content 

𝒂𝑾𝒕
** 

Fault  

Introduced  

𝒂𝑾𝒕
− 𝒂 

Fault  

Corrected  

𝒎𝑾𝒕
 

Estimated 1311.32 1873.65 1356.21 44.99 1297.34 

Reported* 1301 1846.92 — — — 

         *  refers to software reliability data (DS-III) in the Appendix  

      —  the component is not given in DS-II 

    **𝑎𝑊𝑡
= 𝑎 + 𝛼 ∙ 𝑚𝑊𝑡

 given in (Kapur et al., 2009, 2011) 

 

 

 Table 5.18 Fault Type Content Results 

Model 

 

Ground Based Radar Software System 

Easy  Faults Medium  Faults Hard Faults 

Detected 262.50 956.18 137.54 

Corrected 233.94 942.08 121.33 

 

  



www.manaraa.com

 

52 

 

Table 5.19 Calculated Results for Re-used Components 

 

Table 5.20 Calculated Results for Newly-Developed Components 

 

 

The fitting of the proposed model to the actual non-cumulative and cumulative 

software reliability data are graphically illustrated in Figures 5.14 ,5.15 

respectively. From Figure 5.15, we can observe that the estimated values are 

very close to the actual software reliability data and therefore fits the data 

excellently well.  

  

Re-used Components 

component 1 component 2 

𝒂 𝑾𝒕 𝒂𝑾𝒕  𝒂𝑾𝒕
− 𝒂 𝒎𝑾𝒕  𝒂 𝑾𝒕 𝒂𝑾𝒕  𝒂𝑾𝒕

− 𝒂 𝒎𝑾𝒕  

218.99 369.11 219.21 0.219 219.21 43.27 5.62 43.29 0.015 14.74 

Newly-Developed Components 

component 3 component 4 

𝒂 𝑾𝒕 𝒂𝑾𝒕  𝒂𝑾𝒕
− 𝒂 𝒎𝑾𝒕  𝒂 𝑾𝒕 𝒂𝑾𝒕  𝒂𝑾𝒕

− 𝒂 𝒎𝑾𝒕  

916.61 1021.14 956.18 39.57 942.08 132.44 477.78 137.54 5.096 121.33 
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           Fig.  5.14  Non-cumulative reliability data curves 

 

 

 

        Fig.  5.15  Cumulative reliability data curves 
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The resultant goodness-of-fit metrics of the proposed model compared with other 

existing models are given in Table 5.21. As given in Table 5.21, the values of 

MSE, bias, variation and RMSPE for the proposed model are the lowest. 

Since lower values are better, the comparsion criteria favour the proposed 

modeling approach. 

Table 5.21 Comparison criteria metric results 

Models under 

Comparison 

Comparison Criteria 

MSE AIC Bias Variation RMSPE 

Yamada et al. (2000) 3095.19 — 8.262 3379.89 3379.91 

Kapur et al. (2009a) 82.21 — 0.695 659.64  659.64 

Kapur et al. (2009a) 137.95 — 0.457 1846.45 1846.45 

Proposed 80.87 256.21 0.066 9.1239 9.1241 

    —  the metric is not measured by the corresponding model 
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Chapter 6 

Concluding Remarks and Future Work 

The importance of modelling and analysis of software debugging-process or 

fault-correction phenomena in a distributed development environment has been 

well recognized and many studies have addressed this problem. The aim of most 

of these endeavors has been to develop analytical models for the fault correction 

phenomena in order to compute quantities of interest such as the number of faults 

corrected, effort consumption, number of faults introduced due to imperfect-

debugging activities, number of remaining faults and the software reliability 

function.  

In this thesis, we have explored the importance of testing-resource and 

imperfect-debugging phenomenon, through an integrated component-based 

modelling approach for distributed development environment. Therefore, this 

attempt, could be of immense-help to the developer in controlling and monitoring 

the testing-process closely and effectively allocating the resources to reduce the 

testing-cost and to meet the given reliability-requirements.  

         Therefore, this study provides a new insight into the development of 

software reliability modelling in distributed development environment. It has also 

demonstrated the integration of a set of existing non-homogenous Poisson 

process-based software-reliability-model. The resultant integrated component-

based modelling approach has been validated and compared with other existing 

non-homogenous Poisson process based software reliability models by applying  
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them on three software-reliability-data. The results were very plausible and yields 

insightful interpretations for the resources expenditures during the testing and 

debugging phase. 

Today is a period of transition for neural network technology. As neural 

network can be described in a mathematical form and they have a significant 

advantage over analytical models, because they require only software reliability 

data history as input and no assumptions. The extension of our integrated 

component-based modelling approach to demonstrate the applicability of the 

neural network approach to the modelling of software reliability in distributed 

development environment, is an ongoing challenge that stimulates more future 

research efforts. 
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Appendices 

Appendix A 

Dataset I: collected during 19 weeks of testing, 47.65 CPU hours were 

consumed, and 328 software faults were corrected during debugging 

(Ohba, 1984). 

Test time 
(month) 

Execution time 
(CPU hour) 

Detected 
faults 

Cumulative 
execution time 

(CPU hour) 

Cumulative 
detected 

faults 

1 2.45 15 2.45 15 

2 2.45 29 4.9 44 

3 1.96 22 6.86 66 

4 0.98 37 7.84 103 

5 1.68 2 9.52 105 

6 3.37 5 12.89 110 

7 4.21 36 17.1 146 

8 3.37 29 20.47 175 

9 0.96 4 21.43 179 

10 1.92 27 23.35 206 

11 2.88 27 26.23 233 

12 1.44 22 27.67 255 

13 3.26 21 30.93 276 

14 3.84 22 34.77 298 

15 3.84 6 38.61 304 

16 2.3 7 40.91 311 

17 1.76 9 42.67 320 

18 1.99 5 44.66 325 

19 2.99 3 47.65 328 
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Appendix B 

Dataset II: collected during 38 weeks of testing, 2456.4 CPU hours were 

consumed, and 231 software faults were detected during debugging 

(Misra, 1983). 

 

Test time 
(month) 

Execution time 
(CPU hour) 

Detected 
faults 

Cumulative 
execution time 

(CPU hour) 

Cumulative 
detected 

faults 

1 62.5 15 62.5 15 

2 44 6 106.5 21 

3 40 8 146.5 29 

4 68 8 214.5 37 

5 62 8 276.5 45 

6 66 4 342.5 49 

7 73 4 415.5 53 

8 73.5 8 489 61 

9 92 6 581 67 

10 71.4 2 652.4 69 

11 64.5 7 716.9 76 

12 64.7 8 781.6 84 

13 36 3 817.6 87 

14 54 5 871.6 92 

15 39 5 910.6 97 

16 68 8 978.6 105 

17 61 8 1039.6 113 

18 62.6 6 1102.2 119 

19 98.7 12 1200.9 131 

20 25 5 1225.9 136 

21 12 2 1237.9 138 

22 55 5 1292.9 143 

23 49 6 1341.9 149 

24 64 9 1405.9 158 

25 26 1 1431.9 159 

26 66 4 1497.9 163 

27 49 2 1546.9 165 

28 52 4 1598.9 169 

29 70 4 1668.9 173 

30 84.5 9 1753.4 182 

31 83 6 1836.4 188 

32 60 1 1896.4 189 

33 72.5 3 1968.9 192 

34 90 6 2058.9 198 

35 58 6 2116.9 204 
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36 60 3 2176.9 207 

37 168 14 2344.9 221 

38 111.5 10 2456.4 231 
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Appendix C 

C – Dataset III: collected during 35 months of testing, 1846.92 CPU hours 

were consumed, and 1301 software faults were detected during 

debugging (Brooks and Motely, 1980). 

 

Test time 
(month) 

Execution time 
(CPU hour) 

Detected 
faults 

Cumulative  
execution time 

(CPU hour) 

Cumulative 
detected 

faults 

1 7.25 7 7.25 7 

2 3.17 22 10.42 29 

3 7.08 32 17.5 61 

4 7.33 47 24.83 108 

5 7.25 26 32.08 134 

6 12.58 25 44.66 159 

7 19.92 16 64.58 175 

8 52.5 48 117.08 223 

 ض259 164.26 36 47.18 9

10 95.1 53 259.36 312 

11 55.75 57 315.11 369 

12 59.25 39 374.36 408 

13 43.58 71 417.94 479 

14 44.75 80 462.69 559 

15 42.33 65 505.02 624 

16 75 57 580.02 681 

17 62.83 90 642.85 771 

18 73.58 60 716.43 831 

19 42.75 57 759.18 888 

20 40.67 90 799.85 978 

21 96.75 46 896.6 1024 

22 88.58 57 985.18 1081 

23 56.75 29 1041.93 1110 

24 79.25 40 1121.18 1150 

25 73.5 16 1194.68 1166 

26 65.33 18 1260.01 1184 

27 67.83 37 1327.84 1221 

28 116.92 15 1444.76 1236 

29 88.08 8 1532.84 1244 

30 78.08 28 1610.92 1272 

31 37.92 6 1648.84 1278 

32 41.08 5 1689.92 1283 

33 54.5 3 1744.42 1286 

34 63 3 1807.42 1289 

35 39.5 12 1846.92 1301 
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